Soul Joy Hub

但行好事,莫问前程。

机器学习面试问题集(2018-3-13更新)

http://blog.csdn.net/u011239443/article/details/76360294 1 基础概念 1.1 熵、联合熵、条件熵、交叉熵与相对熵的意义? 1.2 归一化方法? 1、线性函数归一化(Min-Max scaling) 线性函数将原始数...

2017-07-30 11:43:27

阅读数 11751

评论数 1

深入理解Spark ML:多项式朴素贝叶斯原理与源码分析

http://blog.csdn.net/u011239443/article/details/76176743朴素贝叶斯的基本原理与简单的python与scala的实现可以参阅:http://blog.csdn.net/u011239443/article/details/68061124贝叶斯...

2017-07-27 12:27:54

阅读数 3276

评论数 0

《neural network and deep learning》题解——ch03 过度拟合&规范化&权重初始化

问题一 正如上面讨论的那样,一种扩展 MNIST 训练数据的方式是用一些小的旋转。如果我们允许过大的旋转,则会出现什么状况呢? 如果我们允许过大的旋转,会使得模型不能很好的学习到数字的特征,甚至学习到错误的特征。

2017-07-16 16:41:10

阅读数 666

评论数 0

《neural network and deep learning》题解——ch03 交叉熵代价函数

http://blog.csdn.net/u011239443/article/details/750912833.1 交叉熵代价函数问题一 验证 σ'(z)=σ(z)(1−σ(z))σ ′ (z) = σ(z)(1 − σ(z))。 σ(z)=11+e−z\large \color{blue...

2017-07-13 19:49:11

阅读数 1631

评论数 2

《neural network and deep learning》题解——ch02 Network源码分析

完整代码:https://github.com/xiaoyesoso/neural-networks-and-deep-learning/blob/master/src/network.py初始化 # sizes 是每层节点数的数组 def __init__(self, sizes)...

2017-07-12 12:24:13

阅读数 978

评论数 0

《neural network and deep learning》题解——ch02 反向传播

2.4 反向传播的四个基本方程(BP1):δL=∇aC⊙σ′(zL)\large \color{blue}{ (BP1):δ ^L = ∇ _a C ⊙ σ ′ (z ^L ) } (BP2):δl=((wl+1)Tδl+1)⊙σ′(zl)\large \color{blue}{ (BP...

2017-07-09 13:58:41

阅读数 1066

评论数 0

提示
确定要删除当前文章?
取消 删除