Soul Joy Hub

但行好事,莫问前程。

《neural network and deep learning》题解——ch03 如何选择神经网络的超参数

问题一上一节有问题也是调参,我们在这里讲解: 更改上面的代码来实现 L1 规范化,使用 L1 规范化使用 30 个隐藏元的神经网络对 MNIST数字进行分类。你能够找到一个规范化参数使得比无规范化效果更好么? 如何修改代码可参阅上节:http://blog.csdn.net/u01123944...

2017-08-31 15:59:31

阅读数 1079

评论数 0

《深度学习Ng》课程学习笔记01week1——深度学习概论

http://blog.csdn.net/u011239443/article/details/77719187课程地址:http://mooc.study.163.com/course/deeplearning_ai-2001281002#/info什么是神经网络如房屋价格预测问题:图中的圈圈代...

2017-08-30 17:11:12

阅读数 573

评论数 0

神经网络-激活函数对比

本博客仅为作者记录笔记之用,不免有很多细节不对之处。 还望各位看官能够见谅,欢迎批评指正。 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/50593...

2017-08-30 11:02:01

阅读数 476

评论数 0

《neural network and deep learning》题解——ch03 再看手写识别问题题解与源码分析

http://blog.csdn.net/u011239443/article/details/77649026完整代码:https://github.com/xiaoyesoso/neural-networks-and-deep-learning/blob/master/src/network2...

2017-08-28 15:12:07

阅读数 1892

评论数 0

《机器学习技法》学习笔记11——GBDT

http://blog.csdn.net/u011239443/article/details/77435463Adaptive Boosted Decision Tree关于AdaBoost、提升树可先参阅:http://blog.csdn.net/u011239443/article/deta...

2017-08-20 22:53:52

阅读数 965

评论数 0

《机器学习实战》(十三)—— PCA

协方差矩阵统计学的基本概念协方差上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解...

2017-08-18 09:55:50

阅读数 1869

评论数 4

《机器学习实战》(七)—— AdaBoost(提升树)

AdaBoost提升树例子将“身体”设为A,“业务”设为B,“潜力”设为C。对该题做大致的求解:这里我们只计算到了f2,相信读者也知道如何继续往下计算。这里特征的取值较少,所以直接使用是否等于某个取值来作为分支条件。实际中,可以设置是否大于或者小于等于某个阈值来作为分支条件。接下来我们就来看看如何...

2017-08-17 09:50:20

阅读数 1104

评论数 0

《deep learning》学习笔记(5)——机器学习基础

http://blog.csdn.net/u011239443/article/details/772021365.1 学习算法 学习算法:对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。...

2017-08-15 22:31:02

阅读数 1313

评论数 0

为什么对高斯分布的方差的极大似然估计是有偏的?

http://blog.csdn.net/qykshr/article/details/23273105本文要证明为什么对高斯分布的方差的极大似然估计是有偏的。同时,也说明为什么求样本方差时,分母是N-1而不是N。首先,明白两点,(1)极大似然法得到的高斯方差是什么形式(2)什么是有偏。 (1)先...

2017-08-15 19:09:05

阅读数 1735

评论数 0

《机器学习实战》(六)—— SVM(SMO算法)

http://blog.csdn.net/u011239443/article/details/77170119 关于SVM的讲解可以参阅《机器学习技法》的相关笔记:http://blog.csdn.net/u011239443/article/details/76572743SMO算法实现# ...

2017-08-14 21:17:27

阅读数 7400

评论数 6

奇异值分解(SVD)

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请...

2017-08-06 11:58:14

阅读数 544

评论数 0

《机器学习技法》学习笔记15——矩阵分解

http://blog.csdn.net/u011239443/article/details/76735871线性网络模型Netflix在2006年给出了一个数据集 (用户id,电影id,电影评分) 让我们来预测用户未评分的电影评分分数。 我们可以讲用户id进行二分向量编码,然后同意用户的...

2017-08-05 21:22:32

阅读数 1877

评论数 0

《机器学习技法》学习笔记13——深度学习

http://blog.csdn.net/u011239443/article/details/76692801深度神经网络 浅层神经网络 深层神经网络 更加有效的训练 难以训练 更简单的结构选择 复杂的结构选择 更具有理论依据,但可能难以提取特征 更加武断的依据,简...

2017-08-04 19:55:10

阅读数 563

评论数 0

《机器学习技法》学习笔记12——神经网络

http://blog.csdn.net/u011239443/article/details/76680704动因单隐藏层神经网络:单隐藏层神经网络做“与”运算:但是单隐藏层神经网无法做异或运算:可以看到上面最右边的图,就算是映射到高维的空间中,依旧是线性不可分的。我们可以使用多层的神经网络来解...

2017-08-04 13:48:38

阅读数 1339

评论数 1

《机器学习技法》学习笔记03——核SVM

http://blog.csdn.net/u011239443/article/details/76598872核技巧接着上篇博文的问题:我们先假定:则有: 于是我们就得到了核函数:那么我们就可以直接用核函数带入到原来的问题中,我们能计算出b:讲核函数代入gSVM=sign(∑SVindices...

2017-08-02 21:35:41

阅读数 610

评论数 0

《机器学习技法》学习笔记02——对偶SVM

对偶SVM的目标如果是非线性SVM,那么问题变成了:zn是xn在d+1z_n是x_n在d+1高维空间映射所得到的值,于是就出现了困境:对偶SVM的目标就是:我们由拉格朗日乘子法得:因为yn(wTzn+b)>=1y_n(w^Tz_n+b)>=1 所以1−yn(wTzn+b)<=0...

2017-08-02 12:26:56

阅读数 523

评论数 0

《机器学习技法》学习笔记01——线性SVM

http://blog.csdn.net/u011239443/article/details/76572743最大间距分离超平面胖的超平面具有更好的错误容忍性。我们目标就是找到能一个超平面,到各个点xnx_n到w最小的距离尽可能的大。而且w需要能正确划分,即 label yny_n 需要和计算出...

2017-08-02 11:02:28

阅读数 1382

评论数 0

提示
确定要删除当前文章?
取消 删除