第二型曲线积分的总结思考

本文探讨第二型曲线积分的概念,强调其与路径无关的特性,解释如何将积分转化为一元积分求解,并提及利用格林公式及技巧解题,旨在建立直观的理解和解题直觉。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

在第一型曲线积分我们知道,问题在于对 ds 的转化。无论是直接化还是通过参数方程进行,目的都是把曲线的微元化为可定义范围的参数或者是x,y。

第二型曲线积分,更多是考察格林公式,与路径无关,闭区域范围内的格林公式失效该怎么分割区域等。

求什么

OK,回到问题中来,一般的第二型曲线积分的长相是这样的:
LP(x,y)dx+Q(x,y)dy

首先需要一种感性认识,其次才是怎么分解这个问题,得到求解的基本思路。

从这个写法上看,是对一个曲线的路径的积分,两个函数分别与 dx dy 相乘。也就是说,当沿着曲线游走的过程中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值