证明$r(A^TA) = r(A)$

本文详细证明了矩阵$A$的转置乘以其自身的秩$r(A^TA)$等于矩阵$A$的秩$r(A)$。首先通过证明$r(ATA)≤r(A)$,利用AX=0的解的关系以及线性表出和秩的比较。然后证明$r(ATA)≥r(A)$,通过变换XTATAX=0得出AX=0,展示ATAX=0的解包含于AX=0中。结论是$r(ATA)=r(A)$。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先需要明确,这个证明的切入点是:方程组的解包含与被包含的挂关系。

1)证明 r(ATA)r(A)

AX=0ATAX=0 必然成立,即: ATAX=0 的解,包含了 AX=0 的解,就说明了 ATAX=0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值