0-1背包问题(回溯法解决)

 

0-1背包问题(回溯法解决)

给定一个物品集合s={1,2,3,…,n},物品i的重量是wi,其价值是vi,背包的容量为W,即最大载重量不超过W。在限定的总重量W内,我们如何选择物品,才能使得物品的总价值最大。

输入
第一个数据是背包的容量为c(1≤c≤1500),第二个数据是物品的数量为n(1≤n≤50)。接下来n行是物品i的重量是wi,其价值为vi。所有的数据全部为整数,且保证输入数据中物品的总重量大于背包的容量。

输出:对每组测试数据,输出装入背包中物品的最大价值。

令cw(i)表示目前搜索到第i层已经装入背包的物品总重量,即部分解(x1, x2 , …, xi)的重量:

在这里插入图片描述
对于左子树, xi =1 ,其约束函数为:
在这里插入图片描述

若constraint(i)>W,则停止搜索左子树,否则继续搜索。

对于右子树,为了提高搜索效率,采用限界函数Bound(i)剪枝。
令cv(i)表示目前到第i层结点已经装入背包的物品价值:

在这里插入图片描述
令r(i)表示剩余物品的总价值:
在这里插入图片描述

则限界函数Bound(i)为:

在这里插入图片描述

假设当前最优值为bestv,若Bound(i)<bestv,则停止搜索第i层结点及其子树,否则继续搜索。
显然r(i)越小, Bound(i)越小,剪掉的分支就越多(在高层剪枝,剪掉的分支越多。从而能加快搜索速度)。
为了构造更小的r(i) ,将物品以单位重量价值比di=vi/wi递减的顺序进行排列(贪心策略):
d1≥d2≥… ≥dn
对于第i层,背包的剩余容量为W-cw(i),采用贪心算法把剩余的物品放进背包。

在这里插入图片描述

为什么没有按照重量进行排序呢?

0-1背包问题的目标是:
在不超重的前提下计算背包内物品的最大价值
因此,贪心策略是:
按照单位价值由大到小进行处理
物品的价值会对限界函数产生影响
物品的重量会对约束函数产生影响
由于根据物品价值制定贪心策略
所以,通过单位价值排序,加速剪枝

#include<iostream>
#include<algorithm>
using namespace std;
#define NUM 100
int c;			//背包的容量		
int n;			//物品的数量
int cw;			//当前背包内物品的重量
int cv;			//当前背包内物品的总价值
int bestv;		//当前最优价值



//描述每个物品的数据结构
struct Object
{
public:
	int w;		//物品的重量
	int v;		//物品的价值
	double d;	//物品的单位价值
public:
	double getd()
	{
		return d;
	}
};		//物品数组

Object Q[NUM];
void backtrack(int i);
int Bound(int i);
bool cmp(Object, Object);


//物品的单位价值重量比是在输入数据时计算的


int main()
{
	cin >> c >> n;


	for (int i = 0; i < n; i++)
	{
		//物品的单位价值重量比是在输入数据时计算的
		scanf_s("%d%d", &Q[i].w, &Q[i].v);
		Q[i].d = 1.0 * Q[i].v / Q[i].w;

	}

	sort(Q, Q + n, cmp);

	backtrack(1);

	cout << bestv;

}








//以物品单位价值重量比递减排序的因子:
bool cmp(Object a, Object b)
{
	if (a.d>= b.d)
		return true;
	else
		return false;
	
}


void backtrack(int i)
{
	//到达叶子节点时更新最优值
	if (i + 1 > n)
	{
		bestv = cv;
		return;
	}

	//进入左子树搜索
	if (cw + Q[i].w <= c)
	{
		cw += Q[i].w;
		cv += Q[i].v;
		backtrack(i + 1);
		cw -= Q[i].w;
		cv -= Q[i].v;

	}

	//进入右子树搜索
	if (Bound(i + 1) > bestv)
		backtrack(i + 1);
}

int Bound(int i)
{
	int cleft = c - cw;				//背包剩余的容量
	int b = cv;						//上界
	//尽量装满背包
	while (i < n && Q[i].w <= cleft)
	{
		cleft -= Q[i].w;
		b += Q[i].v;
		i++;
	}

	//剩余的部分空间也装满
	if (i < n)
		b += 1.0 * cleft * Q[i].v / Q[i].w;
	return b;
}
回溯法解0_1背包问题时,会用到状态空间树。在搜索状态空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。当右子树有可能包含最优解时才进入右子树搜索,否则将右子树剪去。设r是当前剩余物品价值总和;cp是当前价值;bestp是当前最优价值。当cp+r≤bestp时,可剪去右子树。计算右子树中解的上界可以用的方法是将剩余物品依其单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。由此得到的价值是右子树中解的上界,用此值来剪枝。 为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考察各物品即可。在实现时,由MaxBoundary函数计算当前结点处的上界。它是类Knap的私有成员。Knap的其他成员记录了解空间树种的节点信息,以减少函数参数的传递以及递归调用时所需要的栈空间。在解空间树的当前扩展结点处,仅当要进入右子树时才计算上界函数MaxBoundary,以判断是否可以将右子树减去。进入左子树时不需要计算上界,因为其上界与父结点的上界相同。 在调用函数Knapsack之前,需要先将各物品依其单位重量价值从达到小排序。为此目的,我们定义了类Objiect。其中,运算符与通常的定义相反,其目的是为了方便调用已有的排序算法。在通常情况下,排序算法将待排序元素从小到大排序。 在搜索状态空间树时,由函数Backtrack控制。在函数中是利用递归调用的方法实现了空间树的搜索
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值