推荐系统
文章平均质量分 70
漠小浅
IT
展开
-
推荐系统_关联规则挖掘
购物篮分析(关联规则挖掘,频繁规则挖掘)AprioriFPGrowthPTPGrowth原创 2016-05-26 10:39:23 · 4888 阅读 · 0 评论 -
推荐系统_LFM和基于邻域(如UserCF、ItemCF)的方法的比较
LFM是一种基于机器学习的方法,具有比较好的理论基础。这个方法和基于邻域的方法(比如UserCF、ItemCF)相比,各有优缺点。下面将从不同的方面对比LFM和基于邻域的方法。 理论基础 LFM具有比较好的理论基础,他是一种学习方法,通过优化一个设定的指标建立最优的模型。基于邻域的方法更多是一种基于统计的方法,并没有学习过程。 离线计算的空间复杂度原创 2016-05-30 16:57:39 · 4946 阅读 · 0 评论 -
推荐系统_基于内容的推荐
基于内容的推荐基于标签的推荐隐语义模型原创 2016-05-26 17:44:50 · 15370 阅读 · 2 评论 -
推荐系统_itemCF和userCF
推荐系统的分类:基于应用领域分类:电子商务推荐,社交好友推荐,搜索引擎推荐,信息内容推荐基于设计思想:基于协同过滤的推荐,基于内容的推荐,基于知识的推荐,混合推荐基于使用何种数据:基于用户行为数据的推荐,基于用户标签的推荐,基于社交网络数据,基于上下文信息(时间上下文,地点上下文等等)协同过滤:协同过滤的基本思想(基于用户):协同过滤一般是在海量的用户中发掘原创 2016-05-25 21:25:07 · 21931 阅读 · 0 评论 -
推荐系统_随记
个性化推荐的成功应用需要两个条件。第一是存在信息过载,因为如果用户可以很容易地从所有物品中找到喜欢的物品,就不需要个性化推荐了。第二是用户大部分时候没有特别明确的需求,因为用户如果有明确的需求,可以直接通过搜索引擎找到感兴趣的物品。原创 2016-05-31 10:03:18 · 804 阅读 · 0 评论 -
推荐系统_推荐系统的常用评测指标
为了评估推荐算法的好坏需要各方面的评估指标。准确率准确率就是最终的推荐列表中有多少是推荐对了的。召回率召回率就是推荐对了的占全集的多少。下图直观地描述了准确率和召回率的含义覆盖率覆盖率表示推荐的物品占了物品全集空间的多大比例。新颖度新颖度是为了推荐长尾区间的物品。用推荐列表中物品的平均流行度度量推荐结果的新颖度。如果推荐出的物品都很热门,说明原创 2016-05-31 11:54:28 · 6269 阅读 · 0 评论 -
推荐系统_全
推荐系统的分类常见评测标准http://blog.csdn.net/u011263983/article/details/51544495相似度1)同现相似度 2)欧氏距离相似度3)余弦相似度4)秩相关系数相似度5)曼哈顿距离相似度6)对数似然相似度 常见推荐系统算法关联规则; Apriori原创 2016-05-31 22:26:48 · 12154 阅读 · 0 评论 -
协同过滤算法案例
1,,实现User-based协同过滤算法: 数据格式:【用户id】,【项目id】,【评分】 2,实现Item-based协同过滤算法 3,基于奇异值分解实现Model-based协同过滤算法 4,基于Spark的MLlib实现协同过滤算法4.1 MLlib的推荐算法工具 org.spache.spark.原创 2016-06-08 10:00:10 · 3954 阅读 · 0 评论