题目来源:UVA - 11806
原题概述:
在n*m的矩形网格中放置k个相同的石子,要求第一行、最后一行、第一列、最后一列都不能空。问有多少种方法?
分析:
要是在没有限制的n*m网格中放置k个石子,很容易得到答案:C(n*m,k)。 很庆幸,通过容斥原理可将原问题转化为该问题。
设可随意放的方案集为S, 满足“第一行不放石子”的方案集为A,最后一行不放石子的方案集为B,第一列不放石子的方案集为C,最后一列不放石子的方案集为D,则所求问题的答案为:
S-(A U B U C U D) = S – A – B – C – D + A∩B + B∩C + ……
在程序中有二进制来表示 A,B,C,D的所有组合情况。
个人体会:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<stack>
#include<map>
#include<vector>
typedef long long LL;
using namespace std;
const int maxk=505;
const int mod=1000007;
int C[maxk][maxk];
void prepare()
{
int i,j;
C[0][0]=1;
for(i=1;i<maxk;i++)
{
C[i][0]=1;
for(j=1;j<=i;j++)
{C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
}
int main()
{
prepare();
int n,m,k,i,j,cas=1,T,r,c,cnt,s;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&m,&n,&k);
int ans=0;
for(s=0;s<16;s++)
{
cnt=0,r=m,c=n;
if(s&1) r--,cnt++;
if(s&2) r--,cnt++;
if(s&4) c--,cnt++;
if(s&8) c--,cnt++;
if(cnt&1) ans = (ans-C[r*c][k]+mod)%mod;
else ans = (ans+C[r*c][k])%mod;
}
printf("Case %d: %d\n",cas++,ans);
}
return 0;
}