UVA 11806 Cheerleaders

1 篇文章 0 订阅
1 篇文章 0 订阅

题目来源:UVA - 11806

原题概述:

在n*m的矩形网格中放置k个相同的石子,要求第一行、最后一行、第一列、最后一列都不能空。问有多少种方法?



分析:

要是在没有限制的n*m网格中放置k个石子,很容易得到答案:C(n*m,k)。 很庆幸,通过容斥原理可将原问题转化为该问题。

设可随意放的方案集为S, 满足“第一行不放石子”的方案集为A,最后一行不放石子的方案集为B,第一列不放石子的方案集为C,最后一列不放石子的方案集为D,则所求问题的答案为:

S-(A U B U C U D) = S – A – B – C – D + A∩B + B∩C + ……

在程序中有二进制来表示 A,B,C,D的所有组合情况。

个人体会:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<stack>
#include<map>
#include<vector>
typedef long long LL;
using namespace std;
const int maxk=505;
const int mod=1000007;
int C[maxk][maxk];
void prepare()
{
    int i,j;
    C[0][0]=1;
    for(i=1;i<maxk;i++)
    {
        C[i][0]=1;
        for(j=1;j<=i;j++)
        {C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
        }
    }
}
int main()
{
    prepare();
    int n,m,k,i,j,cas=1,T,r,c,cnt,s;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&m,&n,&k);
        int ans=0;
        for(s=0;s<16;s++)
        {
            cnt=0,r=m,c=n;
            if(s&1) r--,cnt++;
            if(s&2) r--,cnt++;
            if(s&4) c--,cnt++;
            if(s&8) c--,cnt++;
            if(cnt&1) ans = (ans-C[r*c][k]+mod)%mod;
            else ans = (ans+C[r*c][k])%mod;
        }
        printf("Case %d: %d\n",cas++,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值