和POJ 3709 K-Anonymous Sequence是完全类似的题目,只是状态方程变了而已。
dp[ i ] = min { dp[ j ] + (A[ i ] - A[ j + 1])*(A[ i ] - A[ j+1 ] ) + C | j<i }
单调队列维护下凸曲线。
记Y[ i ] = dp[ i ] + A[ i+1 ] *A[ i+1 ] , X[ i ] = A[ i+1 ]
rate( a, b) = (Y[b] - Y[a]) / (X[b] - X[a] )
"a<b && b不差于a" 即 " dp[ a ] + (A[ i ] - A[a+1])*(A[ i ] - A[a+1]) + C >= dp[ b ] + (A[ i ] - A[b+1])*(A[ i ] - A[b+1]) + C " 整理得 "rate(a,b) <= 2*A[ i ] "
故有:
① “a<b && b不差于a” 的等价条件是 : rate(a , b ) <= 2*A[ i ]
② 最优决策点myque[p]具有性质: rate(myque[p-1] , myque[p] ) <= 2*A[ i ] < rate(myque[p] , myque[p+1] )
利用①筛选队首元素 。 利用②筛选队尾元素 , 其原理是 若rate(a,b)>=rate(b,c) 则rate(a,b) <= 2*A[ i ] < rate(b,c) 恒不成立,即b不可能最优。
代码:
#include <cstdio>
using namespace std;
const int maxn=1000050;
typedef long long LL;
LL A[maxn] ,dp[maxn] , C;
int myque[maxn] , head ,tail;
int N ;
#define Y(i) (dp[i]+A[i+1]*A[i+1])
#define X(i) (A[i+1])
bool head_check(int a,int b,int i){
return Y(b)-Y(a) <= 2*A[i]*(X(b)-X(a));
}
bool tail_check(int a,int b,int c){
return (Y(b)-Y(a))*(X(c)-X(b)) >= (Y(c)-Y(b))*(X(b)-X(a));
}
LL F(int j,int i){
return dp[j] + (A[i]-A[j+1])*(A[i]-A[j+1]) + C ;
}
int main()
{
while(scanf("%d%I64d",&N,&C)!=EOF && N+C){
for(int i=1;i<=N;i++) scanf("%I64d",&A[i]);
dp[0] = 0 ,myque[0] = 0 ,head = tail =0;
for(int i=1;i<=N;i++){
while(head < tail && head_check(myque[head],myque[head+1],i)) head++;
dp[i] = F(myque[head],i);
while(head < tail && tail_check(myque[tail-1],myque[tail],i)) tail--;
myque[++tail] = i;
}
printf("%I64d\n",dp[N]);
}
return 0;
}