一道很好的线段树的题目,其实是我在给大家拉题目的时候拉错的。。。简直逗的不行。。。
这道题目对序列大概有下面几个操作:
set 操作,就是把区间里的所有数变成0或1
转置操作:把一个区间里的数从0变成1,从1变成0
查询1操作:返回一个区间里1的个数
查询2操作:返回一个区间中最长的1的长度
如果割裂来看的话每个操作都很容易实现,set操作和转置操作可以用lazy操作实现(你如果不用lazy,直接更新到底的话,应该是会T掉的),查询1操作可以用维护区间的和来实现(说到这里我觉得我实在是很逗啊,一开始我把转置操作理解成把和加上区间长度,最后查询的时候取余,但是这里是有问题的,比如你全是0和全是1就是完全一样了),查询2操作可以通过维护三个值来达到,从左边开始的最长串,从右边开始的最长串,整个区间的最长串。
这题思考到这里,想好了维护操作的时候就会有最重要的问题来了。就是转置操作和set操作到底改如何叠加?
首先,我们能想到的是,set操作应该是能覆盖转置操作的。
所以如果一个区间已经有转置操作,可以把这个标记直接摸成set操作,然后更新每个节点的值。
但这题最重要的是,如果要对一个区间进行转置操作的时候应该怎么办?
该题目的关键来了,如果该区间没有标记,则直接更改标记,再修改区间的各个值。
如果该区间有set为0的标记,则将该区间的标记改为1,并更新值
如果有set为1的标记,将标记改称0,更新值
如果有转置标记,将转置标记抹掉,并更新值。
代码写得有点丑。。。
#include "cstdio"
#include "cstring"
#include "iostream"
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define maxn 100005
int a[maxn];
int sum[maxn<<2];
int lazy[maxn<<2];
int l0[maxn<<2],m0[maxn<<2],r0[maxn<<2];
int l1[maxn<<2],m1[maxn<<2],r1[maxn<<2];
void maintain(int l,int r,int rt){
int left=rt<<1, right=rt<<1|1;
int m=(l+r)>>1;
l0[rt]=l0[left],r0[rt]=r0[right];
m0[rt]=max(m0[left],max(m0[right],r0[left]+l0[right]));
if(l0[left]==(m-l+1)) l0[rt]=l0[left]+l0[right];
if(r0[right]==(r-m)) r0[rt]=r0[left]+r0[right];
m0[rt]=max(m0[rt],max(l0[rt],r0[rt]));
l1[rt]=l1[left],r1[rt]=r1[right];
m1[rt]=max(m1[left],max(m1[right],r1[left]+l1[right]));
if(l1[left]==(m-l+1)) l1[rt]=l1[left]+l1[right];
if(r1[right]==(r-m)) r1[rt]=r1[left]+r1[right];
m1[rt]=max(m1[rt],max(l1[rt],r1[rt]));
}
void pushdown(int l,int r,int rt){
int ll=rt<<1,rr=rt<<1|1;
int m=(l+r)>>1;
if(lazy[rt]==0){
lazy[ll]=lazy[rr]=0;
sum[ll]=sum[rr]=0;
l0[ll]=m0[ll]=r0[ll]=m-l+1;
l0[rr]=m0[rr]=r0[rr]=r-m;
l1[ll]=m1[ll]=r1[ll]=l1[rr]=m1[rr]=r1[rr]=0;
lazy[rt]=-1;
}
if(lazy[rt]==1){
lazy[ll]=lazy[rr]=1;
sum[ll]=m-l+1,sum[rr]=r-m;
l1[ll]=m1[ll]=r1[ll]=m-l+1;
l1[rr]=m1[rr]=r1[rr]=r-m;
l0[ll]=m0[ll]=r0[ll]=l0[rr]=m0[rr]=r0[rr]=0;
lazy[rt]=-1;
}
if(lazy[rt]==2){
sum[ll]=m-l+1-sum[ll],sum[rr]=r-m-sum[rr];
swap(l0[ll],l1[ll]),swap(m0[ll],m1[ll]),swap(r0[ll],r1[ll]);
swap(l0[rr],l1[rr]),swap(m0[rr],m1[rr]),swap(r0[rr],r1[rr]);
if(lazy[ll]==2) lazy[ll]=-1;
else if(lazy[ll]==0) lazy[ll]=1;
else if(lazy[ll]==1) lazy[ll]=0;
else lazy[ll]=2;
if(lazy[rr]==2) lazy[rr]=-1;
else if(lazy[rr]==0) lazy[rr]=1;
else if(lazy[rr]==1) lazy[rr]=0;
else lazy[rr]=2;
lazy[rt]=-1;
}
return;
}
void build(int l,int r,int rt){
lazy[rt]=-1;
if(l==r){
sum[rt]=a[l];
l0[rt]=m0[rt]=r0[rt]=a[l]? 0:1;
l1[rt]=m1[rt]=r1[rt]=a[l]? 1:0;
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
maintain(l,r,rt);
}
void update(int L,int R,int op,int l,int r,int rt){
if(L<=l&&R>=r){
if(op==0){
lazy[rt]=0;
sum[rt]=0;
l0[rt]=r0[rt]=m0[rt]=r-l+1;
l1[rt]=r1[rt]=m1[rt]=0;
}
if(op==1){
lazy[rt]=1;
sum[rt]=r-l+1;
l0[rt]=r0[rt]=m0[rt]=0;
l1[rt]=r1[rt]=m1[rt]=r-l+1;
}
if(op==2){
sum[rt]=r-l+1-sum[rt];
swap(l0[rt],l1[rt]),swap(m0[rt],m1[rt]),swap(r0[rt],r1[rt]);
if(lazy[rt]==2) lazy[rt]=-1;
else if(lazy[rt]==0) lazy[rt]=1;
else if(lazy[rt]==1) lazy[rt]=0;
else lazy[rt]=2;
}
return;
}
int m=(l+r)>>1;
pushdown(l,r,rt);
if(L<=m) update(L,R,op,lson);
if(R>m) update(L,R,op,rson);
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
maintain(l,r,rt);
}
int query(int L,int R,int op,int l,int r,int rt){
int m=(l+r)>>1;
if(op==3){
if(L<=l&&R>=r){
return sum[rt];
}
pushdown(l,r,rt);
int ans=0;
if(L<=m) ans+=query(L,R,op,lson);
if(R>m) ans+=query(L,R,op,rson);
return ans;
}else{
if(L<=l&&R>=r){
return m1[rt];
}
pushdown(l,r,rt);
int ans=0;
if(L<=m) ans=max(ans,query(L,R,op,lson));
if(R>m) ans=max(ans,query(L,R,op,rson));
ans=max(ans,min(m-L+1,r1[rt<<1])+min(R-m,l1[rt<<1|1]));
return ans;
}
}
int main(){
int T;
int n,m;
int op,p,q;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
build(1,n,1);
while(m--){
scanf("%d%d%d",&op,&p,&q);
if(op<3) update(p+1,q+1,op,1,n,1);
else printf("%d\n",query(p+1,q+1,op,1,n,1));
}
}
return 0;
}