HDU 4622 Reincarnation

据说是SAM的模板题,可是人傻看不懂SAM。。。

大概就这么写写吧。

题目的意思是给你一个字符串,对应每一个字符串,有若干个询问,问你在区间[l,r]中有多少个不同的自序列。

如果只有一个询问的话,我们很好解决,直接遍历一遍height数组就可以解决了。

但现在询问的区间每次都是不相同的,你不可能每次构造一个height数组然后再算,这样亲测是会超时的。。。不过据说写得好也能过的样子。

现在来说一下我的做法。

在输入字符串后,构造一遍height数组。对于每一个询问,遍历一遍height数组(因为字符串长度比较小,所以可行)。每一次遍历要维护三个值,当前后缀在对应区间的长度,此时区间内已经找到的最大后缀长度,以及相邻的两个后缀的height值。

当前后缀在对应区间的长度很好解决,先判断sa[i]是否在对应的查询区间内,如果不在的话,更新rmq值(也就是相邻的height值)。如果在的话,进行操作。

sublen=r-sa[i]+1,表示当前区间后缀的长度,那么ans+=sublen-min(sublen,rmq,maxlen)。(可能出现在原串中rmq的长度很长,反正就要取最小值)

对于对应值的更新。

如果rmq==0(初始时rmq赋为0),那么更新rmq为height[i+1]。

如果sublen>=maxlen,更新maxlen与rmq的值

如果sublen<maxlen&&rmq<sublen,更新值。

否则只更新rmq的值为height[i+1]。

#include<cstdio>
#include<cstring>
using namespace std;
const int nMax = 2222;

int  num[nMax];
char s[nMax];
int sa[nMax], rank[nMax], height[nMax];
int wa[nMax], wb[nMax], wv[nMax], wd[nMax];

int cmp(int *r, int a, int b, int l){
    return r[a] == r[b] && r[a+l] == r[b+l];
}
int min(int a,int b){
    return a<b ? a:b;
}

void da(int *r, int n, int m){          //  倍增算法 r为待匹配数组  n为总长度 m为字符范围
    int i, j, p, *x = wa, *y = wb, *t;
    for(i = 0; i < m; i ++) wd[i] = 0;
    for(i = 0; i < n; i ++) wd[x[i]=r[i]] ++;
    for(i = 1; i < m; i ++) wd[i] += wd[i-1];
    for(i = n-1; i >= 0; i --) sa[-- wd[x[i]]] = i;
    for(j = 1, p = 1; p < n; j *= 2, m = p){
        for(p = 0, i = n-j; i < n; i ++) y[p ++] = i;
        for(i = 0; i < n; i ++) if(sa[i] >= j) y[p ++] = sa[i] - j;
        for(i = 0; i < n; i ++) wv[i] = x[y[i]];
        for(i = 0; i < m; i ++) wd[i] = 0;
        for(i = 0; i < n; i ++) wd[wv[i]] ++;
        for(i = 1; i < m; i ++) wd[i] += wd[i-1];
        for(i = n-1; i >= 0; i --) sa[-- wd[wv[i]]] = y[i];
        for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++){
            x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p - 1: p ++;
        }
    }
}

void calHeight(int *r, int n){           //  求height数组。
    int i, j, k = 0;
    for(i = 1; i <= n; i ++) rank[sa[i]] = i;
    for(i = 0; i < n; height[rank[i ++]] = k){
        for(k ? k -- : 0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k ++);
    }
}

int main(){
    int t;
    int len;
    scanf("%d",&t);
    while(t--){
        scanf("%s",s);
        len=(int)strlen(s);
        for(int i=0;i<len;i++)
            num[i]=s[i]-'a'+1;
        num[len]=0;
        da(num, len+1, 30);
        calHeight(num, len);
        //for(int i=1;i<=len;i++)  printf("%d ",sa[i]);
        //printf("\n");
        int q,l,r;
        int tag;
        int rmq,maxlen,sublen;
        scanf("%d",&q);
        while(q--){
            scanf("%d%d",&l,&r);
            r--,l--;
            tag=r-l+1;
            rmq=maxlen=sublen=0;
            int ans=0;
            int cnt=0;
            for(int i=1;i<=len;i++){
                if(sa[i]<l||sa[i]>r){
                    rmq=min(rmq,height[i+1]);
                    continue;
                }
                sublen=r-sa[i]+1;
                ans+=sublen-min(sublen,min(rmq,maxlen));
                if(sublen>=maxlen||rmq==0||(sublen<maxlen&&rmq<sublen)){
                    maxlen=sublen;
                    rmq=height[i+1];
                }else{
                    rmq=min(rmq,height[i+1]);
                }
                cnt++;
                if(cnt==tag)  break;
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值