据说是SAM的模板题,可是人傻看不懂SAM。。。
大概就这么写写吧。
题目的意思是给你一个字符串,对应每一个字符串,有若干个询问,问你在区间[l,r]中有多少个不同的自序列。
如果只有一个询问的话,我们很好解决,直接遍历一遍height数组就可以解决了。
但现在询问的区间每次都是不相同的,你不可能每次构造一个height数组然后再算,这样亲测是会超时的。。。不过据说写得好也能过的样子。
现在来说一下我的做法。
在输入字符串后,构造一遍height数组。对于每一个询问,遍历一遍height数组(因为字符串长度比较小,所以可行)。每一次遍历要维护三个值,当前后缀在对应区间的长度,此时区间内已经找到的最大后缀长度,以及相邻的两个后缀的height值。
当前后缀在对应区间的长度很好解决,先判断sa[i]是否在对应的查询区间内,如果不在的话,更新rmq值(也就是相邻的height值)。如果在的话,进行操作。
sublen=r-sa[i]+1,表示当前区间后缀的长度,那么ans+=sublen-min(sublen,rmq,maxlen)。(可能出现在原串中rmq的长度很长,反正就要取最小值)
对于对应值的更新。
如果rmq==0(初始时rmq赋为0),那么更新rmq为height[i+1]。
如果sublen>=maxlen,更新maxlen与rmq的值
如果sublen<maxlen&&rmq<sublen,更新值。
否则只更新rmq的值为height[i+1]。
#include<cstdio>
#include<cstring>
using namespace std;
const int nMax = 2222;
int num[nMax];
char s[nMax];
int sa[nMax], rank[nMax], height[nMax];
int wa[nMax], wb[nMax], wv[nMax], wd[nMax];
int cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a+l] == r[b+l];
}
int min(int a,int b){
return a<b ? a:b;
}
void da(int *r, int n, int m){ // 倍增算法 r为待匹配数组 n为总长度 m为字符范围
int i, j, p, *x = wa, *y = wb, *t;
for(i = 0; i < m; i ++) wd[i] = 0;
for(i = 0; i < n; i ++) wd[x[i]=r[i]] ++;
for(i = 1; i < m; i ++) wd[i] += wd[i-1];
for(i = n-1; i >= 0; i --) sa[-- wd[x[i]]] = i;
for(j = 1, p = 1; p < n; j *= 2, m = p){
for(p = 0, i = n-j; i < n; i ++) y[p ++] = i;
for(i = 0; i < n; i ++) if(sa[i] >= j) y[p ++] = sa[i] - j;
for(i = 0; i < n; i ++) wv[i] = x[y[i]];
for(i = 0; i < m; i ++) wd[i] = 0;
for(i = 0; i < n; i ++) wd[wv[i]] ++;
for(i = 1; i < m; i ++) wd[i] += wd[i-1];
for(i = n-1; i >= 0; i --) sa[-- wd[wv[i]]] = y[i];
for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++){
x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p - 1: p ++;
}
}
}
void calHeight(int *r, int n){ // 求height数组。
int i, j, k = 0;
for(i = 1; i <= n; i ++) rank[sa[i]] = i;
for(i = 0; i < n; height[rank[i ++]] = k){
for(k ? k -- : 0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k ++);
}
}
int main(){
int t;
int len;
scanf("%d",&t);
while(t--){
scanf("%s",s);
len=(int)strlen(s);
for(int i=0;i<len;i++)
num[i]=s[i]-'a'+1;
num[len]=0;
da(num, len+1, 30);
calHeight(num, len);
//for(int i=1;i<=len;i++) printf("%d ",sa[i]);
//printf("\n");
int q,l,r;
int tag;
int rmq,maxlen,sublen;
scanf("%d",&q);
while(q--){
scanf("%d%d",&l,&r);
r--,l--;
tag=r-l+1;
rmq=maxlen=sublen=0;
int ans=0;
int cnt=0;
for(int i=1;i<=len;i++){
if(sa[i]<l||sa[i]>r){
rmq=min(rmq,height[i+1]);
continue;
}
sublen=r-sa[i]+1;
ans+=sublen-min(sublen,min(rmq,maxlen));
if(sublen>=maxlen||rmq==0||(sublen<maxlen&&rmq<sublen)){
maxlen=sublen;
rmq=height[i+1];
}else{
rmq=min(rmq,height[i+1]);
}
cnt++;
if(cnt==tag) break;
}
printf("%d\n",ans);
}
}
return 0;
}