LeetCode:36. Valid Sudoku,数独是否有效 :
-
题目:
-
LeetCode:36. Valid Sudoku
描述:
-
Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules.
The Sudoku board could be partially filled, where empty cells are filled with the character ‘.’.
A partially filled sudoku which is valid.
分析:
-
-
判断一个数独是否有效的判断条件有三个:行、列、子格里都没有重复的1-9数字
思路如下:
1、遍历所有的数组元素,对其中数据进行如下操作:
2、遇到空格也就是“.”时,判断是有效的,并且在定义数组的对应位置上设置其为1,表示已查到该项;
3、首次遇到某数字时,首先设置其在数组中的位置为1,判定有效;
4、当且仅当遇到重复数字时,判定无效。
所以程序应该分为两部分,一部分编写遍历算法,将元素进行三种方式的比对。另一部分用来编写检验是否有效。
5、细节实现
1)遍历算法:
(1)遍历数组元素board[i][j],判断三个条件:
(2)遍历元素对应逻辑九宫格位置:
anRow[j] = board[i][j],
anCloum[i][j] = board[i][j],
anSonSudoKu[j / 3 * 3 + i / 3][j % 3 * 3 + i % 3] = board[i][j]
2) 检验有效( 在逻辑九宫格中标识状态位,1位已查询到):
(1)首次遇到某数字时,首先设置其在数组中的位置为1,判定有效
(2)当且仅当遇到重复数字时,判定无效
(3)首次遇到某数字时,首先设置其在数组中的位置为1,判定有效;
代码:
-
判断一个数独是否有效的判断条件有三个:行、列、子格里都没有重复的1-9数字
bool checkValid(int anArr[], int nVal)
{
// 2) 检验有效:
//(1)首次遇到某数字时,首先设置其在数组中的位置为1,判定有效
//(2)当且仅当遇到重复数字时,判定无效
// (3) 遇到空格也就是“.”时,判断是有效的,并且在定义数组的对应位置上设置其为1,表示已查到该项;
if (nVal < 0) // 判断(3) “.”情况
{
return true;
}
if (1 == anArr[nVal - 1]) // 判断(2) 重复数字情况
{
return false;
}
//(1) 首次遇到某数字
anArr[nVal - 1] = 1;
return true;
}
bool isValidSudoku(const vector<vector<char>>& board)
{
// 1)遍历数组
int anRow[9] = { 0 }; // 用于存储一行的元素比对结果
int anCloum[9] = { 0 }; // 用于存储一列中的元素比对结果
int anSonSudoKu[9] = { 0 }; // 用于存储子格的元素比对
for (int i = 0; i < 9; i++)
{
memset(anRow, 0, sizeof(anRow));
memset(anCloum, 0, sizeof(anCloum));
memset(anSonSudoKu, 0, sizeof(anSonSudoKu));
for (int j = 0; j < 9; j++)
{
if (!checkValid(anRow, board[i][j] - '0') // 检查第i行(0开始计数)
|| checkValid(anCloum, board[j][i] - '0') // 检查第j行(实际为第j列,0开始)
|| checkValid(anSonSudoKu, board[i / 3 * 3 + j / 3][i % 3 * 3 + j % 3] - '0')
// 检查 board[i][j] 元素所在 i / 3 * 3 所在行的3个九宫格的三个元素
)
{
return false;
}
}
}
return true;
}
备注:
好记性不如烂笔头!这道题思考了好几天,才发现人和人差距是很大的~
借鉴了tenos大神的解法LeetCode:Valid Sudoku,Sudoku Solver(数独游戏)