spark依赖外部第三方jar包

一、摘要
由于项目需要搭建spark单独提交jar包运行,而spark提交jar包执行,需要依赖外部其他第三方jar包时候,官方给出的是在spark-submit命令上增加 --jars 参数去指定外部jar包,但是一个项目运行依赖的外部jar及其的多,此种方式肯定是不行的;
网上找的各种方式最终都没有效果,以下是本人所处理的结果;
二、当前运行环境
spark2.4.3 、 jdk1.8 、 scala2.12.2 (不依赖hadoop和oozie等)
三、依赖外部jar包-解决方式及说明
1、在spark根目录下 cd conf 进入目录
在这里插入图片描述
2、 执行

	cp spark-defaults.conf.template   spark-defaults.conf 
	vi spark-defaults.conf 打开该文件准备添加内容

3、在最末尾增加以下两个配置条目

	spark.driver.extraClassPath      外部jar包路径/*
	spark.executor.extraClassPath   外部jar包路径/*  #如/opt/runjar/lib/*

保存退出,重新执行spark-submit即可

四、说明
1、官网文档给出了很多配置,都是可以在spark-defaults.conf里面配置的;
很多配置在当前版本默认都没有,所以需要手动添加
官网配置文档地址:
http://spark.apache.org/docs/latest/configuration.html
在这里插入图片描述
运行环境的配置信息如下在这里插入图片描述

### 回答1: Spark和Flink都是大数据处理框架,它们的jar包依赖不同。Spark依赖包括Scala、Hadoop、Akka等,而Flink的依赖包括Scala、Hadoop、Netty等。在使用这些框架时,需要根据具体的需求选择相应的依赖包,并将其添加到项目中。同时,还需要注意依赖包的版本兼容性,以避免出现不兼容的情况。 ### 回答2: Spark和Flink都是流行的大数据处理框架,它们都支持在作业执行期间使用外部jar包。 对于Spark,可以通过以下几种方式添加jar包依赖: 1. 通过命令行使用--jars参数来指定jar包的路径。例如:`spark-submit --class mainClassName --jars path/to/dependency.jar application.jar`。在这种方法中,所有的依赖jar包都会被自动分发到集群中的每个工作节点,供Spark作业使用。 2. 在代码中使用`SparkContext`的`addJar`方法来添加jar包依赖。例如:`sparkContext.addJar("path/to/dependency.jar")`。这个方法会将依赖jar包分发给集群中的每个工作节点,供Spark作业使用。 对于Flink,可以使用以下几种方式添加jar包依赖: 1. 在代码中通过`env.registerExternalLibrary`方法注册待使用的jar包。例如:`env.registerExternalLibrary("path/to/dependency.jar")`。这样注册后,Flink作业在提交和运行时会将依赖jar包自动分发到集群中。 2. 在Flink的作业配置文件中使用`pipeline.classpaths`属性来指定jar包的路径。例如:`pipeline.classpaths: ["path/to/dependency.jar"]`。Flink在运行作业时会将指定的jar包自动分发到集群中的每个任务运行实例。 以上是Spark和Flink中添加jar包依赖的常用方法,通过这些方法可以将外部jar包导入到框架的运行环境中,以供作业使用。 ### 回答3: Spark和Flink是两个常用的大数据处理框架,它们可以用来处理大规模数据集和流式数据。在使用这两个框架时,我们需要将项目打包成一个可执行的jar包,并在提交任务时依赖所需的库文件。 对于Sparkjar包依赖,我们需要在构建项目时定义所需的依赖项,可以使用Maven或者其他构建工具来管理依赖关系。在pom.xml文件中添加相应的依赖项,例如Spark Core、Spark SQL、Spark Streaming等。在打包项目时,构建工具会把这些依赖项打包进生成的jar包中,以便在集群上执行时可以访问到这些依赖库。 对于Flink的jar包依赖,也需要在构建项目时定义相关的依赖项。与Spark类似,可以使用Maven或其他构建工具来管理依赖关系。在pom.xml文件中添加Flink的核心依赖以及其他需要使用的模块,如Flink SQL、Flink Streaming等。在打包时,依赖项会被打包到生成的jar包中,以便在集群中执行时可以访问到所需的依赖库。 在提交作业时,无论是Spark还是Flink,都需要指定相关的jar包路径,以告知框架要加载的依赖库。可以通过命令行参数或者在代码中设置相应的参数来指定依赖库的路径。框架会根据这些信息在集群中进行作业的执行,保证所需的依赖库可用。 总结来说,无论是Spark还是Flink,jar包依赖都需要在构建项目时定义,并在打包时将依赖库打包到生成的jar包中。在提交作业时,需要指定相关的依赖路径,以确保集群中可以加载到所需的依赖库。这样可以保证在分布式环境中使用Spark和Flink时,能够顺利地执行大数据处理任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值