Java+SSH(Spring+Struts+Hibernate)+Mysql个性化电影推荐系统 基于用户、项目、kmeans聚类、混合的协同过滤推荐算法MovielensCFRSEx 源代码下载

Java+SSH(Spring+Struts+Hibernate)+Mysql个性化电影推荐系统 基于用户、项目、kmeans聚类、混合的协同过滤推荐算法MovielensCFRSEx 源代码下载

一、项目简介

1、开发工具和实现技术

MyEclipse10/Eclipse/IDEA,jdk1.7,mysql5.5/mysql8,navicat数据库管理工具,tomcat7,SSH(spring3+struts2+Hibernate3)开发框架,jsp页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件,webuploader文件上传组件等。

2、项目功能

前台用户包含:注册、登录、注销、浏览电影、搜索电影、信息修改、密码修改、电影评分、个性化推荐电影等功能;
后台管理员包含:数据统计、用户管理、电影管理、电影类型管理、评分管理等。
个性化推荐功能:
系统启动后,会执行InitListener类,是application监听器,InitListener类会先进行聚类计算,并将聚类结果保存在内存中,用户登录后,会进行推荐,推荐首先是聚类,聚类的初始点为项目启动时聚类的结果,将本次聚类结果保存在内存中作为下次聚类的初始簇,这样聚类会越来越准确,推荐会越来越准确,同时聚类计算时间越短。聚类后,找到当前登录用户所在的簇,并将簇中所有用户-评分,构成用户-项目评分矩阵,最后是分别进行基于用户和基于项目的推荐。
电影数据来源:movielens数据集ml-100k 1682movies(u.item) 943users(u.user) 9430ratings(ua.test)
并通过数据集中的电影id,在国外https://www.imdb.com/title/tt网站查找对应电影

二、项目展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、代码展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

作者专业长期研究各种协同过滤推荐算法,欢迎留言、私信互相交流学习,后续会不断更新不同的协同过滤推荐算法,欢迎关注。
项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐给用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤的推荐引擎:它将推荐给用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐给用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linge511873822

亲的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值