个性化电影推荐系统使用python、django、mysql、基于用户、物品的协同过滤推荐算法的开发案例、开发过程 在线视频、影视、电影推荐系统开发原理 个性化推荐算法在电影系统中的应用

个性化电影推荐系统使用python、django、mysql、基于用户、物品的协同过滤推荐算法的开发案例、开发过程 在线视频、影视、电影推荐系统开发原理 个性化推荐算法在电影系统中的应用PersonalizedMovieRecWebPy

一、项目简介

1、开发工具和使用技术

Python3及以上版本,Django3.6及以上版本,mysql8,navicat数据库管理工具或者sqlyog数据库管理工具,bootstrap前端框架,bootstrap字体图标,html页面,javascript脚本,jquery脚本,jquery.raty五角星评分组件等。

2、实现功能

前台首页地址:http://127.0.0.1:8000/
后台首页地址:http://127.0.0.1:8000/admin
管理员账号:admin 管理员密码:admin

前台用户包含:登录、注册、忘记密码、退出登录、搜索电影、浏览电影、修改信息、密码修改、用户评分、用户收藏、用户评论、用户点赞、浏览历史、排行榜、个性化推荐等功能;

后台管理员包含:电影类型管理、电影管理、用户管理、用户评分管理、用户收藏管理、用户评论管理、用户点赞管理、用户历史管理、管理员管理等。

推荐电影:
游客(用户未登录):
为你推荐:根据电影平均评分进行热门推荐;
猜你喜欢:根据电影点赞数量进行热门推荐。
登录用户:
为你推荐:采用基于用户的协同过滤推荐算法,根据用户评分数据,如果基于用户的协同过滤推荐算法没有推荐结果(冷启动和数据稀疏性问题造成没有推荐结果),根据电影平均评分进行热门推荐,同时排除登录用户已有评分的电影;
猜你喜欢:采用基于物品的协同过滤推荐算法,根据用户点赞数据,如果基于物品的协同过滤推荐算法没有推荐结果(冷启动和数据稀疏性问题造成没有推荐结果),根据电影点赞数量进行热门推荐,同时排除登录用户已有点赞的电影。

相关推荐:
查找当前电影类型下收藏量较高的电影,同时不包括当前登录用户收藏过的电影。

排行榜:
人气榜,查询浏览数量较高的电影;
高分榜,查询平均分较高的电影;
收藏榜,查询收藏量较高的电影;
点赞榜,查询点赞量较高的电影。

电影数据来源:爬取豆瓣电影网站

3、开发步骤

一、设计思路
先进行需求分析,得出需要实现的功能,
再进行数据库表的设计,数据表通过主外建实现关联关系
然后是页面设计,页面设计使用bootstrap样式
接着是系统代码的开发,基础功能实现后是进行算法实现

二、框架描述
开发框架使用经典的django框架,这也是python web开发的主流框架
采用了MTV的框架模式,即模型M,视图V和模版T,
通过pycharm创建一个新的django框架项目,pycharm会生成django的基本配置,
直接运行后就可以在浏览器访问django默认首页
我们只是在生成的框架中添加自定义模块功能

django框架工作流程
1、用manage .py runserver 启动Django服务器时就载入了在同一目录下的settings.py。
该文件包含了项目中的配置信息,如前面讲的URLConf等,
其中最重要的配置就是ROOT_URLCONF,
它告诉Django哪个Python模块应该用作本站的URLConf,
默认的是urls.py
2、当访问url的时候,Django会根据ROOT_URLCONF的设置来装载URLConf。
3、然后按顺序逐个匹配URLConf里的URLpatterns。
如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)
4、最后该view函数负责返回一个HttpResponse对象。

三、数据库的设计
数据库设计是使用navicat来创建,操作非常简便

四、算法的实现都是使用python常规函数,严格按照算法步骤实现(算法步骤代码注释很详细)

二、项目展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、代码展示及运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

专业长期研究java、python推荐算法(基于内容、协同过滤、关联规则、机器学习等)、大数据等,欢迎留言、私信互相交流学习,后续会不断更新,欢迎关注。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linge511873822

亲的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值