基于Springboot框架实现在线二手房推荐系统开发教程 java个性化二手房买卖推荐网站设计开发 爬虫、可视化数据分析、排行榜 基于协同过滤推荐算法 基于混合推荐算法 机器学习 大数据 深度学习OnlineHouseRecommend
一、项目简介
1、开发工具和使用技术
IDEA,jdk1.8,mysql5.5及以上版本,navicat数据库管理工具,springboot(spring+springmvc+mybatis)开发框架,thymeleaf模板渲染引擎,html页面,javascript脚本,jquery脚本,bootstrap前端框架,echarts可视化图表组件等。
2、实现功能
用户首页:http://localhost:8080/
管理员首页:http://localhost:8080/admin
管理员账号:admin 管理员密码:admin
用户功能:登录、注册、密码重置、修改信息、修改密码、房屋搜索、房屋排序、个性化推荐、流行度推荐、房屋收藏、房屋评分、房屋点赞、房屋评论、留言、发布房源等;
管理员功能:登录、可视化数据分析、修改信息、修改密码、房屋管理、用户管理、房屋收藏管理、房屋评分管理、房屋点赞管理、房屋评论管理、留言管理、管理员管理等。
为你推荐:
用户没有登录,采用基于流行度的热点推荐,推荐用户偏好值较高的房屋;
用户已经登录,采用基于用户的协同过滤推荐算法,根据用户偏好数据,
如果基于用户的协同过滤推荐算法没有推荐结果(冷启动和数据稀疏性问题造成没有推荐结果),
采用基于流行度的热点推荐,推荐用户偏好值较高的房屋,同时过滤当前登录用户已经浏览的房屋。
猜你喜欢:
随机查询与当前房屋所在城市和厅室相同的其他房屋,同时过滤当前房屋和当前登录用户已经浏览的房屋
可视化数据:饼状图、柱状图、词云图。
房屋数据来源:爬取58同城二手房数据。
二、项目展示
三、代码展示及运行结果