机器学习
文章平均质量分 75
伦敦伪枪
这个作者很懒,什么都没留下…
展开
-
机器学习中正则化的理解
http://www.haodaima.net/art/2591450正则化是结构风险最小化策略的实现,是在经验风险上加上一个正则项(regularizer)或罚项(penalty term)。是模型选择的典型方法。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值越大。比较常用的正则化项有模型参数向量的范数,1-norm、2-norm第1项经验风险较小转载 2015-01-12 16:40:03 · 526 阅读 · 0 评论 -
GBDT(MART) 迭代决策树
http://hi.baidu.com/hehehehello/item/96cc42e45c16e7265a2d64eeGBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起转载 2015-01-12 20:51:53 · 462 阅读 · 0 评论 -
分类回归树CART(上)
转载自http://www.cnblogs.com/zhangchaoyang/articles/2709922.html分类回归树(CART,Classification And Regression Tree)也属于一种决策树,上回文我们介绍了基于ID3算法的决策树。作为上篇,这里只介绍CART是怎样用于分类的。分类回归树是一棵二叉树,且每个非叶子节点都有两个孩子,所以对于第一棵子树其转载 2015-01-04 14:41:19 · 428 阅读 · 0 评论 -
生成模型与判别模型
http://blog.csdn.net/zouxy09 一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否。若有错误,还望各位前辈不吝指正,以免小弟一错再错。在此谢过。 一、决策函数Y=f(X)或者条件概率分布P(Y|X) 监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y。转载 2015-01-21 15:24:50 · 321 阅读 · 0 评论 -
总结数据挖掘预测分类中的样本筛选和特征处理
转载自 http://www.thebigdata.cn/JieJueFangAn/13023.html基于特征化工程进行用户特征化,结合相关的机器学习算法对业务进行挖掘建模,在广告的精准投放、预测、风控等领域中应用的非常广泛。无论是有监督的学习分类算法,还是无监督的聚类也罢,都需要建立特征向量,对特征进行预处理;其中对于有监督的训练时,还需要进行样本的筛选。本章节讲解一下样本选择和特征处理方转载 2015-01-04 15:06:26 · 1887 阅读 · 0 评论 -
独立性检验
转载自http://www.cnblogs.com/zhangchaoyang/articles/2642032.html本文给出基于两种统计量的假设检验,来检验变量间是否独立--χ2与秩和。χ2越小说明越独立。你可能会参考另一篇博客相关性检验。假设检验假设检验(Test of Hypothesis)又称为显著性检验(Test of Ststistical Sign转载 2015-01-04 15:08:24 · 518 阅读 · 0 评论