KaTex 编写示例 公式 数学公式

例1. 展示风格

编码
$$
c(t) = \displaystyle\sum_{i=0}^nb**\scriptscriptstyle** i \displaystyle B \scriptscriptstyle i \displaystyle(t),0 \le t \le1, \tag{1}
$$
效果:
c ( t ) = ∑ i = 0 n b i B i ( t ) , 0 ≤ t ≤ 1 , (1) c(t) = \displaystyle\sum_{i=0}^nb\scriptscriptstyle i \displaystyle B\scriptscriptstyle i \displaystyle(t),0 \le t \le1, \tag{1} c(t)=i=0nbiBi(t),0t1,(1)

例2. 穿插风格

编码
式中,n为次数,$b \scriptscriptstyle i$为第$i$个控制点,$B \scriptscriptstyle i,n \displaystyle (t)$为Bernstein基多项式,如式(2)所示:
效果:
式中,n为次数, b i b\scriptscriptstyle i bi为第 i i i个控制点, B i , n ( t ) B\scriptscriptstyle i,n \displaystyle (t) Bi,n(t)为Bernstein基多项式,如式(2)所示:

例3. 混合

编码
$$
B \scriptscriptstyle i,n \displaystyle (t)=\dbinom{n}{i} ti(1-t){n-i},i = 0,…,n, \tag{2}
$$
式中,$\binom{n}{i}$是二项式系数
效果:
B i , n ( t ) = ( n i ) t i ( 1 − t ) n − i , i = 0 , . . . , n , (2) B\scriptscriptstyle i,n \displaystyle (t)=\dbinom{n}{i} t^i(1-t)^{n-i},i = 0,...,n, \tag{2} Bi,n(t)=(in)ti(1t)ni,i=0,...,n,(2)
式中, ( n i ) \binom{n}{i} (in)是二项式系数

例4. 矩阵

编码
$$
\left[
\begin{matrix}
B_{0,3}(t_0) & \cdots & B_{3,3}(t_0) \\
B_{0,3}(t_1) & \cdots & B_{3,3}(t_1) \\
\vdots & \ddots & \vdots \\
B_{0,3}(t_m) & \cdots & B_{3,3}(t_m)
\end{matrix}
\right]
\left[
\begin{matrix}
b_{x0} & b_{y0} \\
b_{x1} & b_{y1} \\
b_{x2} & b_{y2} \\
b_{x3} & b_{y3}
\end{matrix}
\right] =
\left[
\begin{matrix}
p_{x0} & p_{y0} \\
p_{x1} & p_{y1} \\
\vdots & \vdots \\
p_{xm} & p_{ym}
\end{matrix}
\right]
\tag{4}
$$
效果:
[ B 0 , 3 ( t 0 ) ⋯ B 3 , 3 ( t 0 ) B 0 , 3 ( t 1 ) ⋯ B 3 , 3 ( t 1 ) ⋮ ⋱ ⋮ B 0 , 3 ( t m ) ⋯ B 3 , 3 ( t m ) ] [ b x 0 b y 0 b x 1 b y 1 b x 2 b y 2 b x 3 b y 3 ] = [ p x 0 p y 0 p x 1 p y 1 ⋮ ⋮ p x m p y m ] (4) \left[ \begin{matrix} B_{0,3}(t_0) & \cdots & B_{3,3}(t_0) \\ B_{0,3}(t_1) & \cdots & B_{3,3}(t_1) \\ \vdots & \ddots & \vdots \\ B_{0,3}(t_m) & \cdots & B_{3,3}(t_m) \end{matrix} \right] \left[ \begin{matrix} b_{x0} & b_{y0} \\ b_{x1} & b_{y1} \\ b_{x2} & b_{y2} \\ b_{x3} & b_{y3} \end{matrix} \right] = \left[ \begin{matrix} p_{x0} & p_{y0} \\ p_{x1} & p_{y1} \\ \vdots & \vdots \\ p_{xm} & p_{ym} \end{matrix} \right] \tag{4} B0,3(t0)B0,3(t1)B0,3(tm)B3,3(t0)B3,3(t1)B3,3(tm)bx0bx1bx2bx3by0by1by2by3=px0px1pxmpy0py1pym(4)

例5. 其他

编码
$$
op = bp \cdot \dfrac {g_{iw}} {h_{out}}+tp \cdot
(1-\dfrac {g_{ih}}{h_{out}})
$$
效果:
o p = b p ⋅ g i w h o u t + t p ⋅ ( 1 − g i h h o u t ) op = bp \cdot \dfrac {g_{iw}} {h_{out}}+tp \cdot (1-\dfrac {g_{ih}}{h_{out}}) op=bphoutgiw+tp(1houtgih)

参考文档

欢迎访问我的博客
隆力奇的博客

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值