SOM网络的训练方法
SOM神经网络采用的算法称为Kohonen算法,它的基本思想是:网络输出层的各神经元通过竞争来获得对输入层的响应机会,最后只有一个神经元获胜。获胜的神经元对它临近的神经元的影响由近及远,由兴奋逐渐转为抑制,那些与获胜神经元有关的各连接权朝着有利于它竞争的方向转变。
j =1,2,3,,,m),建立初始优胜邻域
jN和学习率初值。m为输出层神经元数目。
(2)接受输入
从训练集中随机取一输入模式并进行归一化处理,得到),
SOM神经网络采用的算法称为Kohonen算法,它的基本思想是:网络输出层的各神经元通过竞争来获得对输入层的响应机会,最后只有一个神经元获胜。获胜的神经元对它临近的神经元的影响由近及远,由兴奋逐渐转为抑制,那些与获胜神经元有关的各连接权朝着有利于它竞争的方向转变。
SOM网络的算法如下:
(1)初始化
对输出层各权向量赋予较小的随机数并进行归一化处理,得到,j =1,2,3,,,m),建立初始优胜邻域
jN和学习率初值。m为输出层神经元数目。
(2)接受输入
从训练集中随机取一输入模式并进行归一化处理,得到),