SOM网络

SOM(自组织映射)网络是一种自学习、自组织的神经网络模型,主要包含初始化、优胜邻域定义、权值调整等步骤。在训练过程中,邻域会随时间逐渐收缩,学习率降低至一定程度时训练结束。SOM网络的学习不足在于输入模式顺序会影响分类结果,且无法在不完全重新学习的情况下添加新类别。SOM网络的权系数向量能反映输入模式的中心,常用于数据的量化和学习向量量化器。
摘要由CSDN通过智能技术生成
SOM网络的训练方法 
 
SOM神经网络采用的算法称为Kohonen算法,它的基本思想是:网络输出层的各神经元通过竞争来获得对输入层的响应机会,最后只有一个神经元获胜。获胜的神经元对它临近的神经元的影响由近及远,由兴奋逐渐转为抑制,那些与获胜神经元有关的各连接权朝着有利于它竞争的方向转变。 

SOM网络的算法如下:

 (1)初始化 

对输出层各权向量赋予较小的随机数并进行归一化处理,得到,
j =1,2,3,,,m),建立初始优胜邻域
jN和学习率初值。m为输出层神经元数目。 
(2)接受输入 
从训练集中随机取一输入模式并进行归一化处理,得到),
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值