神经元模型和网络结构

本文详细介绍了神经元模型,包括单输入和多输入神经元,重点解析了传输函数的种类及其作用。同时,概述了神经网络的结构,从单层到多层,包括隐藏层和输出层的概念,并提到了递归网络的构成。选取网络结构应考虑输入、输出数量及传输函数的选择,以适应具体的应用问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:神经元模型

1.单输入神经元

神经元是神经网络操作的基本信息处理单位。一个单输入神经元如下图所示。标量输入p乘上权值w得到wp,再将其送入累加器;另一个输入1乘上偏置值b,再将其送入累加器。偏置值b的作用是根据其为正或负,相应的增加或者降低传输函数的网络输入。累加器输出n通常被称为传输函数f的净输入,当n被送到传输函数f时,在f中产生神经元的标量输出a。

2.传输函数。

上图中的传输函数可以是n的线性或者非线性函数,可以用特定的传输函数满足神经元要解决的问题。下面将讨论三种传输函数:

(1)硬极限传输函数;

(2)线性传输函数;

(3)对数s形传输函数;

目前工程和设计中运用的传输函数有很多,常用的传输函数都在下表中。当然,也可以根据特定的问题定义自己需要的传输函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值