4. Median of Two Sorted Arrays
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
C++
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
vector<int> nums3;
float medians = 0;
if(nums1.size() == 0)
{
if(nums2.size()%2 == 0)
{
return medians = (nums2[nums2.size()/2] + nums2[nums2.size()/2 - 1])/2.0;
}
else
{
return medians = nums2[(nums2.size()-1)/2];
}
}
if(nums2.size() == 0)
{
if(nums1.size()%2 == 0)
{
return medians = (nums1[nums1.size()/2] + nums1[nums1.size()/2 - 1])/2.0;
}
else
{
return medians = nums1[(nums1.size()-1)/2];
}
}
int k = nums1.size() + nums2.size();
int i = 0;
int n =0, m = 0;
if(k % 2 == 0)
{
k = k/2 + 1;
while(i <= k)
{
if(m < nums1.size() && n < nums2.size())
{
if(nums1[m] <= nums2[n])
{
nums3.push_back(nums1[m]);
m++;
i++;
}
else
{
nums3.push_back(nums2[n]);
n++;
i++;
}
}
else
{
if(n == nums2.size())
{
nums3.push_back(nums1[m]);
m++;
i++;
}
if(m == nums1.size())
{
nums3.push_back(nums2[n]);
n++;
i++;
}
}
}
medians = (nums3[k-2] + nums3[k-1]) / 2.0;
}
else
{
k = (k + 1)/2;
while(i <= k)
{
if(m < nums1.size() && n < nums2.size())
{
if(nums1[m] <= nums2[n])
{
nums3.push_back(nums1[m]);
m++;
i++;
}
else
{
nums3.push_back(nums2[n]);
n++;
i++;
}
}
else
{
if(n == nums2.size())
{
nums3.push_back(nums1[m]);
m++;
i++;
}
if(m == nums1.size())
{
nums3.push_back(nums2[n]);
n++;
i++;
}
}
}
medians = nums3[k-1];
}
return medians;
}
};