目录
引言:微调技术的演进与价值
随着大模型参数规模突破千亿级,全量微调(Full Fine-tuning)面临显存占用高、计算成本大等挑战。参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术应运而生,通过仅调整0.1%-5%的参数量即可实现任务适配,成为大模型落地的关键技术路径。本文系统梳理PEFT技术体系,结合Transformer架构解析核心原理,并给出方法选型指南与实战案例。
一、微调的必要性:从通用智能到领域专家
大模型通过预训练学习通用语义表征,但在垂直场景中面临三大瓶颈:
- 领域知识缺失(如医疗术语识别)
- 任务模式差异(如代码生成与文本摘要)
- 资源消耗限制(单卡24G显存无法承载百亿级模型全量微调)
以GPT-3 175B为例,全量微调需320GB显存,而LoRA微调仅需1.28GB,效率提升250倍。下表对比主流PEFT方法的关键指标:
方法 | 参数量占比 | 显存消耗 | 任务适配能力 |
---|---|---|---|
Full Fine-tuning | 100% | 极高 | 最优 |
LoRA | 0.1%-0.5% | 极低 | 优秀 |
Adapter | 0.5%-2% | 低 | 良好 |
Prefix Tuning | 0.01%-0.1% | 极低 | 中等 |
二、技术解析:PEFT方法的三重范式
1. 加性微调(Additive Tuning)
核心思想:通过引入外部可训练参数实现模型行为调整
(1)LoRA系列:低秩适配的工程实践
-
数学原理ÿ