大语言模型核心技术解析:从训练到部署的全链路实践

目录

引言

一、大模型技术架构解析

二、模型训练关键技术

三、模型部署工程实践

四、典型应用场景分析

五、挑战与展望

参考文献


引言

随着ChatGPT等应用的爆发式增长,大语言模型(LLM)已成为AI领域的技术制高点。本文将从技术实现视角,系统解析大语言模型的架构原理、训练范式及工程实践要点,为开发者提供可落地的技术参考。


一、大模型技术架构解析

1.1 核心架构演进
主流大模型均基于Transformer架构,其核心公式为:

    Attention(Q,K,V)=softmax(VK^T/\sqrt[]{d_{k}})V

相较于RNN架构,Transformer的并行计算特性使其更适合处理长序列数据(图1)。以GPT-3为例,其架构参数配置如下:

层级数 注意力头数 隐层维度 参数量
96 96 12288 175B

1.2 训练数据特征
典型大语言模型的训练数据需满足以下特性:

# 数据预处理示例
def preprocess_text(text):
    text = remove_special_chars(text)  # 去除特殊字符
    tokens = wordpiece_tokenize(text)  # 子词切分
    return add_positional_encoding(tokens)  # 位置编码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七刀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值