目录
引言
随着GPT-4、LLaMA等大语言模型(LLM)的突破,人工智能逐渐从单模态处理向多模态融合演进。多模态AI通过整合文本、图像、音频、视频等异构数据,模拟人类多感官协同的认知能力,成为推动通用人工智能(AGI)发展的关键技术。本文从技术架构、融合方法、对齐机制、前沿模型等角度,系统解析多模态AI的核心原理与应用进展,并结合2025年最新研究成果,探讨未来发展方向。
一、多模态AI的技术架构
多模态AI的技术架构通常分为数据编码、特征融合与跨模态对齐三大模块,其核心在于解决异构数据的统一表征与交互问题。
1.1 多模态编码方法
(1)连续编码
通过预训练的单模态编码器(如CLIP的视觉编码器、BERT的文本编码器)将各模态映射到独立的特征空间,再通过投影层对齐。例如,CLIP将图像和文本编码至共享语义空间,通过对比学习实现跨模态匹配。
数学表达:
对于图像-文本对 (I, T)
,对比损失函数为:
其中 s(I,T)
表示图像和文本特征的余弦相似度,\tau
为温度系数。
(2)离散编码
将数据转化为离散标记(Token),例如图像通过VQ-VAE生成视觉词表,音频通过SoundStream编码为符号序列。此类方法便于模态统一处理,但可能丢失细节信息。
(3)混合编码
综合连续与离散编码优势。例如,BLIP-3-o模型在图像理解阶段使用CLIP连续编码,生成阶段采用扩散Transformer生成离散标记。
1.2 多模态融合层次
根据数据处理阶段,融合可分为三类:
- 数据级融合:直接合并原始数据(如RGB图像与深度图拼接),适用于模态高度相关场景。
- 特征级融合:提取各模态特征后拼接或加权融合。例如,Transformer的交叉注意力机制动态分配权重。
- 决策级融合:独立模型输出结果后集成(如多数投票、贝叶斯平均),适合多专家意见综合。
特征级融合示例(图像-文本):
其中 h_v
和 h_t
分别为图像和文本特征,W_v
、W_t
为可训练投影矩阵。