deep-learning
文章平均质量分 61
EastWR
hi 你好
展开
-
[译]Time Series Forecasting with the Long Short-Term Memory Network in Python
Time Series Forecasting with the Long Short-Term Memory Network in Python长短时记忆循环神经网络(LSTM)在学习观测长序列具有很好的前景。这种方法看上去与解决时间序列预测问题完美的匹配,而事实上,它可能真的如此。在本教程里,你将了解如何开发一个 LSTM 预测模型,以解决单变量单步时间序列预测问题。翻译 2017-10-31 12:55:07 · 3886 阅读 · 2 评论 -
理解LSTM在keras API中参数return_sequences和return_state
Understand the Difference Between Return Sequences and Return States for LSTMs in KerasKears LSTM API 中给出的两个参数描述return_sequences:默认 False。在输出序列中,返回单个 hidden state值还是返回全部time step 的 hidden state值。 Fals原创 2017-11-10 16:28:08 · 52874 阅读 · 18 评论 -
TensorFlow基础name_scope与variable_scope
name_scope与variable_scopeimport tensorflow as tfOutline变量重用总结1.变量重用在Tensorflow中,直接重用变量会出错,必须指明 reuse。 变量重用实现的就是RNN中的参数共享操作。此处的 with 和其他处的不太一样,执行完后,里面所申请的变量还驻留在内存中,所以打印语句在外面也是可以实现的。# name_scope + Var原创 2017-11-29 19:46:16 · 345 阅读 · 0 评论 -
TensorBoard-01-网络结构
TensorBoard-01-网络结构官方的例子,for me, 一个小白,还是有点复杂,于是,我只要把它拆分一下,自我学习,大佬们就直接跳过把 本篇不进行训练,只搭建网络结构。并在 tensorboard 中展示本文打算搭建一个2个隐层的神经网络结构import tensorflow as tf# 函数准备def nn_layer(input_tensor, input_dim, output_原创 2017-11-29 21:11:41 · 285 阅读 · 0 评论 -
静态与动态RNN函数比较
静态与动态RNN比较Tensorflow中提供了两种创建RNN结构的函数:tf.nn.static_rnntf.nn.dynamic_rnn两个函数的区别如下[1]:tf.nn.static_rnn creates an unrolled graph for a fixed RNN length. That means, if you call tf.nn.static_rnn with in原创 2017-11-27 21:16:01 · 2537 阅读 · 0 评论