【bzoj4037】【HAOI2015】【矩阵乘法】【DP】str

Str

Time Limit: 10 Sec Memory Limit: 256 MB

Description

你有一个长度为n的数字串。
定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为
4=1+1+1+1
你可以将这个数字串分割成若干个数字(允许前导0),将他们加起来,求f,并求和。
比如g(123)=f(1+2+3)+f(1+23)+f(12+3)+f(123)。
已知字符串和m后求答案对998244353(7×17×223+1,一个质数)取模后的值。

Input

第一行输入一个字符串,第二行输入m

Output

仅输出一个数表示答案

Sample Input

123
3

Sample Output

394608467

HINT

对于100%的数据,字符串长度不超过500,m<=5

Source

鸣谢bhiaibogf提供

dp题,但全程化加为乘,导致我这个蒟蒻想了好久


大概说一下我是怎么理解的,首先是f,这个递推式一下就写得出来f[i]=f[i-1]+f[i-2]+…+f[i-m],然后m那么小我们就可以用矩阵乘法优化运算速度,同时化加为乘。
然后我们来看g, g(n)=ni=1f(A(i,n))g(i1) 但是这个公式什么意思呢》为什么g有一定是矩阵呢,我们来看一下样例。
g(123) = f(1+2+3)+f(12+3)+f(1+23)+f(123)
g(12)=f(1+2)+f(12)
g(1) = f(1)

g(123)=g(12)*f(3)+g(1)*f(23)+1*f(123)
= f(1+2)*f(3)+f(12)*f(3)+f(1)*f(23)+f(123)
这个时候我们为什么要用矩阵就可以看出来了,因为矩阵化加为乘了,我们f(1+2)*f(3) = <script type="math/tex" id="MathJax-Element-462">=</script>f(1+2+3)这样我们的递推式就可以很好理解了

然后下面是代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<stack>
#define INF 2100000000
#define ll long long
#define clr(x)  memset(x,0,sizeof(x))
#define maxclr(x)  memset(x,127,sizeof(x))

using namespace std;

inline int read()
{
    char c;
    int ret=0;
    while(!(c>='0'&&c<='9'))
        c=getchar();
    while(c>='0'&&c<='9')
    {
        ret=(c-'0')+(ret<<1)+(ret<<3);
        c=getchar();
    }
    return ret;
}

#define M 505
#define P 998244353LL

int m,n;

struct marix
{
    int n[6][6];
    void set()
    {
        clr(n);
        for(int i=1;i<=m;i++)
            n[i][i]=1;
    }
};


marix operator*(marix a,marix b)
{
    marix ret;
    clr(ret.n);
    for(int i=1;i<=m;i++)
        for(int j=1;j<=m;j++)
            for(int k=1;k<=m;k++)
                ret.n[i][j]=((ll)ret.n[i][j]+(ll)a.n[i][k]*(ll)b.n[k][j])%P;
    return ret;
}

void operator+=(marix &a,marix b)
{
    for(int i=1;i<=m;i++)
        for(int j=1;j<=m;j++)
            a.n[i][j]=(a.n[i][j]+b.n[i][j])%P;
}

marix mi(marix a,int t)
{
    marix temp=a,ret;
    ret.set();
    while(t)
    {
        if(t&1)ret=ret*temp;
        temp=temp*temp;
        t>>=1;
    }
    return ret;
}

char temp[M];
int a[M];
marix num[M][10],A,dp[M];
marix X;

int main()
{
    freopen("in.txt","r",stdin);
    scanf("%s",temp);
    n=strlen(temp);
    for(int i=1;i<=n;i++)a[i]=temp[i-1]-'0';
    scanf("%d",&m);
    for(int i=1;i<=m;i++)A.n[i][1]=1;
    for(int i=1;i<m;i++)A.n[i][i+1]=1;

    X.set();
    for(int i=1;i<=100;i++)
        X=X*A;
    for(int i=1;i<=n;i++)
    {
        num[i][0].set();
        for(int j=1;j<=9;j++)
            num[i][j]=num[i][j-1]*A;
        A=mi(A,10);
    }
    dp[0].set();
    for(int i=1;i<=n;i++)
    {
        A.set();
        for(int j=i-1;j>=0;j--)
        {
            A=A*num[i-j][a[j+1]];
            dp[i]+=dp[j]*A;
        }           
    }
    cout<<dp[n].n[1][1];
}

大概就是这个样子,如果有什么问题,或错误,请在评论区提出,谢谢。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值