Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
Input
The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.
The input file is terminated by a line containing a single 0. Don't process it.
The input file is terminated by a line containing a single 0. Don't process it.
Output
For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.
Output a blank line after each test case.
Output a blank line after each test case.
Sample Input
2
10 10 20 20
15 15 25 25.5
0
Sample Output
Test case #1
Total explored area: 180.00
题目大意:给定每个矩形的对角线的两个端点,让你求这些矩形的面积的并集,即重叠的不能重复计算
题目分析:这题就是典型的线段树求面积并
离散化:对所有节点的Y进行升序排序,然后以Y的位置建树,就是指,在线段树里面,左右节点的实际意义就是指这个线段在Y的升序数组里的位置,但是我们把lf,rf赋值为这个线段左右端点的具体值,这就是离散化
建树的细节:树的每个节点有lf,rf,cover,lenth,分别指这个节点所表示的线段的左端点,右端点,被覆盖的次数(在这里覆盖的次数是为了区分重叠矩形的情况下,高度的正确存取,因为一个矩形对Y轴的覆盖是以他的左边开始,右边结束的,所以当插入左边的时候,我们把cover+1,右边的时候把cover-1,说明这个矩形对Y的覆盖已经结束,计算下一个矩形时,不会错误的把我这个矩形的高度当作下一个矩形的高度),lenth指这个区间被矩形覆盖的长度即矩形的实际高度;插入的时候,先把存放节点的数组,对X进行升序排序,然后顺次插入,分别计算
#include <stdio.h>
#include <algorithm>
using namespace std;
double x1,y1,x2,y2,ym[1111];
struct tree
{
double lf,rf,lenth;
int cover;
}s[4444]; //树节点定义
struct node
{
double x,y1,y2;
int flag;
}t[4444]; //存放矩形左,右边的节点
int cmp1(double x,double y)
{
return x < y;
}
int cmp2(node a,node b)
{
return a.x < b.x;
}
void len(int n)
{
if(s[n].cover>0)
s[n].lenth=s[n].rf-s[n].lf;
else
s[n].lenth=s[2*n+1].lenth+s[2*n].lenth;
}
int Build(int x,int y,int num)
{
s[num].lf=ym[x];
s[num].rf=ym[y];
s[num].lenth=s[num].cover=0;
if(x+1==y) return 0;
int mid=(x+y)/2;
Build(x,mid,num+num);
Build(mid,y,num+num+1);
}
int Update(int num,node n)
{
if(s[num].lf==n.y1 && s[num].rf==n.y2)
{
s[num].cover+=n.flag;
len(num);
return 0;
}
if(n.y1>=s[num+num].rf) Update(num+num+1,n);
else if(n.y2<=s[num+num+1].lf) Update(num+num,n);
else
{
node vs=n;
vs.y2=s[num+num].rf;
Update(num+num,vs);
vs=n;
vs.y1=s[num+num+1].lf;
Update(num+num+1,vs);
}
len(num); //往上更新线段被覆盖的实际长度,如果节点的cover>0,
//该区间节点的被覆盖就是区间的整体程度;
//否则,该区间节点的被覆盖等于左右节点被覆盖长度的和
}
int main()
{
int cas,i,j,k=1;
double sum;
while(scanf("%d",&cas) && cas)
{
for(j=i=1;i<=cas;i++,j+=2)
{
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
ym[j]=y1;
t[j].x=x1;
t[j].y1=y1;
t[j].y2=y2;
t[j].flag=1;
ym[j+1]=y2;
t[j+1].x=x2;
t[j+1].y1=y1;
t[j+1].y2=y2;
t[j+1].flag=-1;
}
sort(ym+1,ym+j,cmp1);
sort(t+1,t+j,cmp2);
Build(1,j-1,1);
Update(1,t[1]);
sum=0;
for(i=2;i<j;i++)
{
sum+=(t[i].x-t[i-1].x)*s[1].lenth;//每插入完一个点,就以它后继的点求面积
Update(1,t[i]);
}
printf("Test case #%d\n",k);
printf("Total explored area: %.2lf\n\n",sum);
k++;
}
return 0;
}