uva 10417 Gift Exchanging(概率 + dfs)

737 篇文章 0 订阅
202 篇文章 0 订阅
该博客介绍了UVA 10417 Gift Exchanging问题,这是一个概率和深度优先搜索(DFS)结合的应用问题。在一场生日派对中,主人要从不同包装的礼物中随机选择,以找到其最好朋友赠送的礼物。题目提供每种包装出现的次数和每个人携带特定包装的概率。解题方法是通过DFS枚举所有可能的情况,计算每种包装来自最好朋友的概率,并找出概率最大的包装。最终输出概率最大且包装编号最小的答案。
摘要由CSDN通过智能技术生成

题目连接:uva 10417 Gift Exchanging


题目大意:有个2B过生日,请了n个朋友,每个朋友都会带一个礼物,礼物都是有包装的,但是包装只有5种,然后现在给出c1 ~c5,表示说现在桌子上出现各种包装的礼物各有多少个,然后告诉你每个人会带来5种包装的概率(和为1),第一个人是2B最好的朋友,2B想随即抽取一个,请问他应该拿哪一种包装的最好,即拿到最好朋友送得礼物的概率最大,输出包装号和概率,有相同概率输出包装号较小的。


解题思路:dfs枚举所有可能情况,并计算出现当前状况的概率为p(A), 然后分别记录最好朋友送某种包装的概率r[i],注意最有的概率p = r[i] / c[i] / p(A).最大即为答案。


#include <stdio.h>
#include <string.h>
#include <math.h>

const int MAXN = 15;
const int N = 5;

int n, cnt[MAXN];
double r[MAXN], p[MAXN][MAXN];

void init() {
	scanf("%d", &n);
	memset(r, 0, sizeof(r));
	for (int i = 0; i < N; i++)
		scanf("%d", &cnt[i]);
	for (int i = 0; i < n; i++)
		for (int j = 0; j < N; j++)
			scanf("%lf", &p[i][j]);
}

double dfs(int d, double c) {
	if (n == d) {
		return c;
	}

	double ans = 0;
	for (int i = 0; i < N; i++) {
		if (cnt[i] && fabs(p[d][i]) > 1e-9) {
			cnt[i]--;

			double t = dfs(d + 1, c * p[d][i]);
			ans += t;

			if (d == 0) r[i] += t;

			cnt[i]++;
		}
	}
	return ans;
}

void solve(double s) {
	int id = 0;
	double ans = 0;
	for (int i = 0; i < N; i++) {
		double c = r[i] / cnt[i];
		if (c - ans > 1e-9) {
			id = i;
			ans = c;
		}
	}
	printf("%d %.3lf\n", id + 1, ans / s);
}

int main () {
	int cas;
	scanf("%d", &cas);
	while (cas--) {
		init();
		double s = dfs(0, 1);
		solve(s);
	}
	return 0;
}


用c++解决You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1 ≤ S ≤ N ≤ 100, 1 ≤ M ≤ 100, V is real number, 0 ≤ V ≤ 103. For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2 ≤ rate ≤ 102, 0 ≤ commission ≤ 102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO.
最新发布
06-03
以下是使用C++解决该问题的代码示例: ``` #include <iostream> #include <vector> #include <cstdio> #include <cstring> using namespace std; const int MAXN = 110; const double INF = 1e9; struct Edge { int from, to; double rate, commission; Edge(int from, int to, double rate, double commission) : from(from), to(to), rate(rate), commission(commission) {} }; vector<Edge> edges; double dist[MAXN]; bool bellman_ford(int n, int m, int s, double v) { memset(dist, 0, sizeof(dist)); dist[s] = v; for (int i = 0; i < n - 1; i++) { bool updated = false; for (int j = 0; j < m; j++) { Edge e = edges[j]; if (dist[e.from] > e.commission && dist[e.from] * e.rate - e.commission > dist[e.to]) { dist[e.to] = dist[e.from] * e.rate - e.commission; updated = true; } } if (!updated) { break; } } for (int j = 0; j < m; j++) { Edge e = edges[j]; if (dist[e.from] > e.commission && dist[e.from] * e.rate - e.commission > dist[e.to]) { return true; } } return false; } int main() { int n, m, s; double v; scanf("%d%d%d%lf", &n, &m, &s, &v); for (int i = 0; i < m; i++) { int a, b; double rab, cab, rba, cba; scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba); edges.push_back(Edge(a, b, rab, cab)); edges.push_back(Edge(b, a, rba, cba)); } if (bellman_ford(n, m * 2, s, v)) { printf("YES\n"); } else { printf("NO\n"); } return 0; } ``` 该代码使用了Bellman-Ford算法来判断是否可以增加资产。具体实现方法为:首先将起始点的资产赋值为v,其余点的资产赋值为0;然后进行n-1轮松弛操作,每次遍历所有边,如果满足条件(即当前点的资产大于手续费,且通过该边操作后能够得到更多的资产),则更新该点的资产;最后再进行一轮遍历,如果仍然满足条件,则说明可以增加资产,否则不能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值