题目链接:uva 12223 - Moving to Nuremberg
题目大意:给出n,表示有n个位置,n个位置有n-1条边,形成一个无根的树,每条边上都有权值。现在每个位置都有一个景点,一个人想在一年之内去ki次景点,所以接下来给出m,表示说在m个位置上有这个人想去的地方,给出位置以及想去的次数(注意,每去一个景点都要返回自己的住处),然后问说,这个人该住在哪里走的路程才最短。
解题思路:因为给出的是一个无根树,没有根的话就不好有个基准,所以我们在这里默认把节点1做为根,这样的话就变成了有根的树了。那么假设现在u为当前处理的节点,它又一个子节点v,那么u-v这条要走的次数即为以v为根的子树上所有节点要访问的次数之和乘以2(注意来回),那么这个值可以用cnt[v]处理出来,所以第一次的dfsCnt即将以1为根节点的树的所有cnt处理出来,并计算出dp[1](以1为根需要的路程)作为基准,然后假如u-v相连,且dp[u]已经知道了,那么dp[v]和dp[u]相差的部分起始只有u-v这条边走的次数而已。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 50005;
struct state {
int v;
ll w;
state (int v = 0, ll w = 0) {
this->v = v;
this->w = w;
}
};
int n, vis[N];
ll ans, sum, cnt[N], dp[N];
vector<state> g[N];
void init () {
int a, b;
ll w;
scanf("%d", &n);
sum = 0;
memset(dp, 0, sizeof(dp));
memset(cnt, 0, sizeof(cnt));
for (int i = 0; i <= n; i++)
g[i].clear();
for (int i = 1; i < n; i++) {
scanf("%d%d%lld", &a, &b, &w);
g[a].push_back(state(b, w));
g[b].push_back(state(a, w));
}
int m;
scanf("%d", &m);
for (int i = 0; i < m; i++) {
scanf("%d%lld", &a, &w);
sum += w;
cnt[a] = w;
}
}
void dfsCnt (int u, ll W) {
vis[u] = 1;
dp[1] += W * cnt[u];
for (int i = 0; i < g[u].size(); i++) {
state cur = g[u][i];
if (vis[cur.v]) continue;
dfsCnt(cur.v, cur.w*2 + W);
cnt[u] += cnt[cur.v];
}
}
void dfsAns (int u) {
vis[u] = 1;
ans = min (ans, dp[u]);
for (int i = 0; i < g[u].size(); i++) {
state cur = g[u][i];
if (vis[cur.v]) continue;
dp[cur.v] = dp[u] + (sum - 2*cnt[cur.v]) * cur.w*2;
dfsAns(cur.v);
}
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init ();
memset(vis, 0, sizeof(vis));
dfsCnt(1, 0);
ans = dp[1];
memset(vis, 0, sizeof(vis));
dfsAns(1);
bool flag = false;
printf("%lld\n", ans);
for (int i = 1; i <= n; i++) if (ans == dp[i]) {
if (flag) printf(" ");
printf("%d", i);
flag = true;
}
printf("\n");
}
return 0;
}