uva 10237 - Bishops(dp)

解决UVA 10237 - Bishops问题,探讨如何在n*n棋盘上放置k个主教,使得它们互不攻击。通过将棋盘旋转45度,将黑白格分开,转换为在不同颜色格子上放置车的问题,使用动态规划求解放置方案数量。最后,通过枚举黑格上的主教数量并应用加法原理得出总方案数。
摘要由CSDN通过智能技术生成

题目链接:uva 10237 - Bishops

题目大意:给出n和k,问在nn的棋盘上放k个主教互相不攻击能有多少种方法,主教的攻击方式是斜线。

解题思路:将棋盘旋转45度,然后将黑白格子互相分开,因为在国际里面,黑格的主教是永远无法攻击到白格的主教。所以将黑白格分开考虑。
然后对于一种格子的颜色来说,它就类似与在一个棋盘上放车,d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值