遥感
文章平均质量分 84
楚兴
这个作者很懒,什么都没留下…
展开
-
遥感图像分类现状及存在的问题
根据有无监督训练样本,可以将遥感图像分类算法分为监督分类和非监督分类两大类。 根据分类的对象,可将遥感分类算法分为基于像元的分类算法、基于对象的分类算法,以及基于混合像元分解算法三大类。基于像元的分类基于像元的分类,就是分类的研究对象是单个像元,利用像元的光谱信息、纹理信息、空间关联等信息对像元表示的地物类别属性进行判断。这一类分类算法是目前研究得最多、最深入的分类算法。在遥感图像自动分类中,传统原创 2015-03-19 10:25:37 · 13653 阅读 · 0 评论 -
几种常用影像比较
一、LandsatLandsat主题成像仪 (TM)是Landsat4和Landsat5 携带的传感器,从1982年发射至今,其工作状态良好,几乎实现了连续的获得地球影像。Landsat4和Landsat5每16 天扫瞄同一地区,即其16天覆盖全球一次。Landsat4,5TM影像包含7个波段,波段1-5和波段7的空间分辨率为30米,波段6热红外波段的空间分辨率为120米。南北的扫描范围大约为原创 2015-01-23 18:29:13 · 6971 阅读 · 0 评论 -
提取RGB影像的植被
在易康Developer中提取植被,最为常用的就是归一化植被指数NDVI,但是NDVI的计算需要近红外波段的参与;对于一些平时用到的只有RGB三个波段影像,如何提取植被呢? 这里提供两种特征,第一种是绿波段比率,在易康里可以直接在光谱特征的Ratio里计算得到该特征,此特征效果较差;第二种称之为VI',需要在易康里通过自定义特征来计算得到,其计算公式相对较为复杂,所以在编辑的时候要转载 2014-11-21 21:07:43 · 10752 阅读 · 9 评论 -
四种聚类方法的比较
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即转载 2015-12-30 17:20:53 · 15359 阅读 · 0 评论 -
Matlab分类器大全
train_data是训练特征数据, train_label是分类标签。 Predict_label是预测的标签。 MatLab训练数据, 得到语义标签向量 Scores(概率输出)。1.逻辑回归(多项式MultiNomial logistic Regression)Factor = mnrfit(train_data, train_label);Scores = mnrval(Factor,转载 2016-01-12 20:51:25 · 6328 阅读 · 0 评论 -
bootstrap, boosting, bagging
介绍boosting算法的资源:视频讲义,介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/在这个网站的资源项里列出了对于boosting算法来源介绍的几篇文章,可以下载: http://www.boosting.org/tutorials一个博客介绍了许多视觉中常用算法,作者的实验和理原创 2016-01-13 20:55:07 · 1729 阅读 · 0 评论