48.旋转图像
解题思路
package leadcode;
/**
* @author : icehill
* @description : 旋转图像
* 给定一个 n×n 的二维矩阵matrix 表示一个图像。请你将图像顺时针旋转 90 度。
* 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
* 示例 1:
* 输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
* 输出:[[7,4,1],[8,5,2],[9,6,3]]
* 示例 2:
* 输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
* 输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
* 示例 3:
* 输入:matrix = [[1]]
* 输出:[[1]]
* 示例 4:
* 输入:matrix = [[1,2],[3,4]]
* 输出:[[3,1],[4,2]]
* 链接:https://leetcode-cn.com/problems/rotate-image
* 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
* 解题思路:原地旋转,每次旋转四个数,第一个数临时保存起来
* 时间复杂度:O(N^2)
* 空间复杂度:O(1)
* @date : 2021-05-20
*/
public class Solution48 {
public static void main(String[] args) {
int[][] matrix1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
int[][] matrix2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}};
Solution48 solution48 = new Solution48();
solution48.rotate(matrix1);
solution48.rotate(matrix2);
}
public void rotate(int[][] matrix) {
int n = matrix.length - 1;
for (int i = 0; i <= n / 2; i++) {
for (int j = i; j < n - i; j++) {
int temp = matrix[j][n - i];
matrix[j][n - i] = matrix[i][j];
matrix[i][j] = matrix[n - j][i];
matrix[n - j][i] = matrix[n - i][n - j];
matrix[n - i][n - j] = temp;
}
}
return;
}
/**
* 官方写法
*
* @param matrix
*/
public void rotateTwo(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2; ++i) {
for (int j = 0; j < (n + 1) / 2; j++) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - j - 1][i];
matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
matrix[j][n - i - 1] = temp;
}
}
}
}