Softmax回归和逻辑回归的区别
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 y y y可以取两个以上的值[1]。当类别数 k = 2 k=2 k=2时,softmax 回归退化为 logistic 回归。
Softmax回归 vs. k个logistic回归
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
代码示例
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(file_path):
dataMat = []
labelMat = []
fr = open(file_path)
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat, labelMat
# 加载数据
dataMat, labelMat = loadDataSet('testSet.txt') # 《机器学习实战》逻辑回归中用的数据集
dataMat = np.mat(dataMat).astype(np.float32)
labelMat = np.mat(labelMat).transpose()
# 制作one-hot格式的label
onehot_list = []
for i in range(len(labelMat)):
onehot = [0, 0]
onehot[labelMat[i].item()] = 1
onehot_list.append(onehot)
labelMat = np.array(onehot_list).astype(np.float32)
class_num = 2
threshold = 1.0e-2
x_data = tf.placeholder("float32", [None, 2])
y_data = tf.placeholder("float32", [None, class_num])
weight = tf.Variable(tf.ones([2, class_num]))
bias = tf.Variable(tf.ones([class_num]))
y_model = tf.nn.softmax(tf.matmul(x_data, weight) + bias)
loss = tf.reduce_sum(tf.pow((y_model - y_data), 2))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
step = 0
loss_buf = []
train_num = 70 # 一共就100个样本,拿出70个出来用于训练,剩下的30个用于测试
for _ in range(100):
for data, label in zip(dataMat[0:train_num, :], labelMat[0:train_num, :]):
label = label.reshape([1, 2])
sess.run(train_step, feed_dict={x_data: data, y_data: label})
step += 1
'''
if step % 10 == 0:
print(step, sess.run(weight).flatten(), sess.run(bias).flatten())
'''
loss_val = sess.run(loss, feed_dict={x_data: data, y_data: label})
print('loss_val = ', loss_val)
loss_buf.append(loss_val)
if loss_val <= threshold:
flag = 0
#print('weight = ', weight.eval(sess))
# 测试准确率
correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(y_data, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(sess.run(accuracy, feed_dict={x_data: dataMat[train_num+1:100, :], y_data: labelMat[train_num+1:100, :]}))
sess.close()
# 画出loss曲线
loss_ndarray = np.array(loss_buf)
loss_size = np.arange(len(loss_ndarray))
plt.plot(loss_size, loss_ndarray, 'b+', label='loss')
plt.show()
print('end')
loss曲线:
疑问:怎样画出Softmax回归得到的分类直线?
答:会提出这样的问题应该是Softmax回归和逻辑回归的概念还没弄清楚。
(me)在Softmax回归中,输出结果是one-hot形式的向量,向量的每一维的输出非0即1,根据Softmax回归的假设模型
h
θ
(
x
(
i
)
)
h_{\theta}(x^{(i)})
hθ(x(i))可知,每一维的参数
θ
j
{\theta}_j
θj都不相同,所以也不能像逻辑回归中那样画出一条分类直线了。
参考文献
[1] Softmax回归