神经与蛋白
码龄6年
关注
提问 私信
  • 博客:278,336
    278,336
    总访问量
  • 29
    原创
  • 564,207
    排名
  • 96
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2019-01-10
博客简介:

whocare的博客

博客描述:
DIP,DSP
查看详细资料
个人成就
  • 获得247次点赞
  • 内容获得47次评论
  • 获得908次收藏
  • 代码片获得591次分享
创作历程
  • 4篇
    2022年
  • 23篇
    2021年
  • 4篇
    2020年
  • 2篇
    2019年
成就勋章
TA的专栏
  • 质量评估
    1篇
  • LeetCode
    1篇
  • 深度学习
    7篇
  • ffmpeg
    1篇
  • 传统算法
    2篇
  • 音视频处理
    2篇
  • linux
    4篇
  • 工具使用
    4篇
  • C++
    1篇
  • 信号处理
    1篇
  • matlab
  • 计算机
    6篇
  • 人工智能
    1篇
  • 嵌入式
    1篇
  • python
    3篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络tensorflowpytorch图像处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

不同分辨率标准,720p 1080p 2k 4k HD FHD UHD

对于我们常说的视频分辨率主要可以分为两个标准:DCI(数字电影联盟)和屏幕分辨率标准。1.DCI定义了2k和4k标准:2K=2048x1080,4K=4096x2160之所以这样定义是,在数字技术领域,通常采用二进制运算,而且用构成图像的像素数来描述数字图像的大小。由于构成数字图像的像素数量巨大,通常以K来表示2^10即1024,因此:1K=2^10=1024,2K=2^11=2048,4K=2^12=4096。2.对于屏幕分辨率标准: 480p ...
原创
发布博客 2022.05.19 ·
18980 阅读 ·
3 点赞 ·
0 评论 ·
21 收藏

C++链表基本用法及LeetCode经典链表题目汇总

链表基本用法:目录链表基本用法:C++链表及基本操作LeetCode链表经典题目汇总:2. 两数相加19. 删除链表的倒数第 N 个结点21. 合并两个有序链表23. 合并K个升序链表24. 两两交换链表中的节点25. K 个一组翻转链表61. 旋转链表92. 反转链表 II141. 环形链表142. 环形链表 II160. 相交链表328. 奇偶链表C++链表及基本操作 1 2 ...
原创
发布博客 2022.05.02 ·
3725 阅读 ·
3 点赞 ·
0 评论 ·
27 收藏

model.train()和model.eval()的用法及model.eval()可能导致测试准确率的下降

问题导入:一般我们在训练模型时会在前面加上:model.train()在测试模型时会在前面使用:model.eval()但是在某次使用网络测试模型时,训练准确率很高,但测试准确率很低,排查了各种问题,绝不是过拟合问题,因为都使用了训练集来测试模型,准确率还是不行,最终发现把model.eval()去掉后,准确率就上来了,百思不得其解。为何使用model.train()和model.eval()?model.train()和model.eval()主要是针对网络中存在BN层(Batch Normal
原创
发布博客 2022.04.21 ·
9755 阅读 ·
38 点赞 ·
14 评论 ·
142 收藏

Sigmoid和Softmax在二分类中使用的区别与实现

对于二分类有三种实现方式:1. nn.Linear(input, 1) + sigmoid + BCELoss全连接输出维度为1,使用sigmoid将输出映射到0,1之间self.outputs = nn.Linear(input, 1)def forward(self, x): # other layers omitted x = self.outputs(x) return torch.sigmoid(x) 那么在这种情况下,我们使用torch.
原创
发布博客 2022.04.01 ·
4521 阅读 ·
12 点赞 ·
0 评论 ·
26 收藏

两数交换的几种方式--python

两数交换比较简单方式1:利用python本身的性质----元组如下:直接a, b = b,a即可,只是其中用的中间变量元组(b,a)def swap1(a,b): a, b = b,a #等价于 # c = (b,a) # a = c[0] # b = c[1] return a,b方式二:最简单也最常规的方法,中间变量def swap2(a,b): temp = a a = b b = temp return a
原创
发布博客 2021.11.13 ·
2000 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

FLOPS和FLOPs、GFLOPs区别与计算

FLOPS (全部大写)是floating-point operations per second的缩写,意指每秒浮点运算次数。用来衡量硬件的性能。FLOPs 是floating point of operations的缩写,是浮点运算次数,可以用来衡量算法/模型复杂度。常用当然还有GFLOPs和TFLOPsGFLOPS 就是 Giga Floating-point Operations Per Second,即每秒10亿次的浮点运算数,常作为GPU性能参数但不一定代表GPU的实际表现,因为还要考虑具
原创
发布博客 2021.10.20 ·
64308 阅读 ·
35 点赞 ·
0 评论 ·
210 收藏

ffplay播放源yuv视频文件--ffplay常用命令大全

ffplay播放有封装格式的视频:ffplay testvideo.mp4ffplay播放源视频文件,即无封装或压缩的文件yuv/rgbffplay -f rawvideo -video_size 640x360 testvideo.yuvffplay常用命令:参考链接:https://blog.csdn.net/akai9898/article/details/109689734...
原创
发布博客 2021.10.13 ·
1649 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

引导滤波/导向滤波原理与实现

引导滤波/导向滤波是何凯明等人在2010年ECCV上提出来的,文章为《Guided Image Filtering》。import cv2import numpy as npinput_fn=r"E:\study\python\python_code\code\CV\Guide_filter\pic\beach.jpg"def my_guidedFilter_oneChannel(srcImg,guidedImg,rad=9,eps=0.01): srcImg=srcImg/
原创
发布博客 2021.05.17 ·
1232 阅读 ·
3 点赞 ·
0 评论 ·
23 收藏

双边滤波原理与实现

原创
发布博客 2021.05.17 ·
172 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

FFmpeg自定义Filter

FFmpeg是一款音视频编解码库,是多媒体开发者的必备技能。FFmepg提供了多种媒体格式的封装和解封装,包括音视频编码、多种协议的流媒体、多种色彩格式转换、多种采样率转换、多种码率转换等。 1 FFmepg的基本组成 FFmpeg框架的基本组成包含AVFormat、AVCodec、AVFilter、AVDevice、AVUtil...
转载
发布博客 2021.04.27 ·
757 阅读 ·
3 点赞 ·
1 评论 ·
1 收藏

linux服务器创建新用户

服务器创建新用户:(home环境下的)(1)创建用户:sudo adduser user(2)加入权限组:sudo usermod -a -G sudo user(3)提升文件权限:chmod 777 fileName(4)使用vscode连接服务器当前新建用户(5)在vscode安装python解释器用来选择python Interpreter(6)在data/disk中创建数据文件夹(是disk硬盘环境下的),用于保存数据以及编写程序。home下主要用于软件环境的配置。...
原创
发布博客 2021.04.12 ·
1059 阅读 ·
1 点赞 ·
2 评论 ·
3 收藏

linux添加路径到环境--以ffmpeg为例

如果在linux安装了ffmpeg但是仍然需要输入 /usr/local/ffmpeg/bin/ffmpeg -version, 才可以查看版本号,而不可以直接 ffmpeg -version时,则需要进行将安装路径添加到环境。在终端下输入以下代码:vi ~/.bash_profile然后在最下面加入一行代码:export PATH="/usr/local/ffmpeg/bin:${PATH}"接着保存并回到终端下,执行以下代码:source ~/.bash_profile于是就可以直接
原创
发布博客 2021.04.11 ·
2085 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

linux命令大全学习查找网站

推荐几个学习或者查找linux的网站链接:1.linux命令大全手册2.linux命令大全|菜鸟教程3.linux常用命令学习(首先学习,很重要)4.linux系统在线帮助文档|C语言中文网5.linux中文命令手册
原创
发布博客 2021.04.08 ·
577 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

linux添加环境变量方法

一、需要明白以下2点:1、Linux的环境变量是保存在变量PATH中,可通过Linux shell命令 echo $PATH 查看输出内容,或者直接输入export查看。2、Linux环境变量值之间是通过冒号进行隔开的( : )格式为:PATH=$PATH:<PATH 1>:<PATH 2>:<PATH 3>:------:<PATH N>二、暂时的添加环境变量PATH:可通过export命令,如export PATH=/usr/local/ngi
转载
发布博客 2021.04.08 ·
2174 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

input/output is not in graph tf.layers.conv2d在name命名时会自动在其后添加Conv2D

tf.layers.conv2d()在用name命名时会自动在其后添加Conv2D下面是编写的一个dncnn网络模型,分别给第一层block1和第17层block17命名为input和outputdef dncnn(input, is_training=True, output_channels=1): with tf.variable_scope('block1'): output = tf.layers.conv2d(input, 64, 3, padding='same',
原创
发布博客 2021.04.08 ·
1118 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

linux下ffmpeg安装libtensorflow

参考安装链接:ffmpeg深度学习模块dnn_processing使用libtensorflow C端安装教程1.下载tensorflow安装包:这里因为要使用GPU,所以使用的版本为:libtensorflow-gpu-linux-x86_64-1.14.0.tar.gz下载链接为:https://tensorflow.google.cn/install/lang_c?hl=zh-cn可根据自己的需求选择版本:2.解压解压缩下载的归档文件,其中包含要添加到 C 程序中的头文件以及要与之
原创
发布博客 2021.04.07 ·
479 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

linux解压压缩包安装软件库 Error: XX not found

在linux下安装一些软件或者库时,有时会发生错误,比如:Error : XX not found因为我是先将libtensorflow-gpu-linux-x86_64-1.14.0.tar.gz,这个库压缩包解压后到本地,然后再将其拷贝到linux系统下的usr/local下的,参考的是:linux下安装ffmpeg中的tensorflow分别将文件夹下的lib和include文件分别拷贝到usr/local/下的lib和include.结果一直报错,not found。解决方法:自己解压把
原创
发布博客 2021.04.07 ·
411 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

.ckpt模型转.pb模型(查找ckpt节点名称)-Tensorflow

ckpt模型和pb模型介绍:ckpt:1.这种模型文件是依赖 TensorFlow 的,只能在其框架下使用;2.在恢复模型之前还需要再定义一遍网络结构,然后才能把变量的值恢复到网络中。pb:1.谷歌推荐的保存模型的方式是保存模型为 PB 文件,它具有语言独立性,可独立运行,封闭的序列化格式,任何语言都可以解析它,它允许其他语言和深度学习框架读取、继续训练和迁移 TensorFlow 的模型;2. 保存为 PB 文件时候,模型的变量都会变成固定的,导致模型的大小会大大减小,适合在手机端运行。所以
原创
发布博客 2021.03.29 ·
967 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

本地加载数据集---keras下载mnist或imdb等数据集较慢解决方法

正常下载mnist或imdb等keras自带的数据集,下载程序为:import tensorflow as tffrom tensorflow import kerasimdb = keras.datasets.imdb(train_data, train_labels),(test_data, test_labels) = imdb.load_data(num_words=10000)下载后数据集会默认保存到路径:C:\Users\asus\.keras\datasets可能遇到问题:使用
原创
发布博客 2021.03.21 ·
1166 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

const引用详解

“对const的引用”简称为“常量引用”const引用作用const引用可以用不同类型的对象初始化不加const的引用如下:不能完成不同类型的转换,也即不能用不同类型的对象进行初始化。即对于普通引用,引用的类型必须与其所引用对象的类型一致。加入const引用:运行后发现 j=10.上述运行过程其实是先生成一个临时量temp:const int tmp = i; //生成临时变量 const int &j = tmp; //绑定临时变量 const引用注意事项:(1
原创
发布博客 2021.03.21 ·
6756 阅读 ·
9 点赞 ·
0 评论 ·
30 收藏
加载更多