题目大意是在一块M行N列的农场上种谷物,但是不希望彼此相邻(共用一条边),并且有些地方不能种植谷物,给定M,N(范围都不超过12)以及一些不能种谷物的位置,求出一共有多少种方法种谷物。
状态压缩DP,设dp(i, k) 为种到第i行时,第i行状态为k的总共方案数,可以知道dp(i, k) = ∑dp(i -1, k'),其中我们要判断彼此相邻的情况以及不能种植的情况即可。
#include <stdio.h>
#include <vector>
#include <math.h>
#include <string.h>
#include <string>
#include <iostream>
#include <queue>
#include <list>
#include <algorithm>
#include <stack>
#include <map>
#include <time.h>
using namespace std;
int dp[13][5000];
int planted[12][12];
int main()
{
#ifdef _DEBUG
freopen("e:\\in.txt", "r", stdin);
#endif
memset(dp, 0, sizeof(dp));
memset(planted, 0, sizeof(planted));
int n, m;
scanf("%d %d", &n, &m);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
scanf("%d", &planted[i][j]);
}
}
int count = 1;
dp[0][0] = 1;
for (int i = 1; i <= n; i++)
{
for (int k = 0; k < (1 << m); k++)
{
for (int j = 0; j < (1 << m); j++)
{
bool bok = true;
for (int c = 0; c < m;c++)
{
if (((k >> c) & 1) == 1 && (((j >> c) & 1) == 1 || planted[i-1][c] == 0))
{
bok = false;
break;
}
if (c > 0)
{
if (((k >> c) & 1) == 1 && ((k >> (c - 1)) & 1) == 1)
{
bok = false;
break;
}
}
if (c < m - 1)
{
if (((k >> c) & 1) == 1 && ((k >> (c + 1)) & 1) == 1)
{
bok = false;
break;
}
}
}
if (!bok)
{
continue;
}
dp[i][k] += dp[i - 1][j];
dp[i][k] %= 1000000000;
}
if (k!=0)
{
count += dp[i][k];
count %= 1000000000;
}
}
}
printf("%d\n", count);
return 0;
}