POJ3254 Corn Fields 状态压缩DP

        题目大意是在一块M行N列的农场上种谷物,但是不希望彼此相邻(共用一条边),并且有些地方不能种植谷物,给定M,N(范围都不超过12)以及一些不能种谷物的位置,求出一共有多少种方法种谷物。

        状态压缩DP,设dp(i, k) 为种到第i行时,第i行状态为k的总共方案数,可以知道dp(i, k) = ∑dp(i -1, k'),其中我们要判断彼此相邻的情况以及不能种植的情况即可。

#include <stdio.h>
#include <vector>
#include <math.h>
#include <string.h>
#include <string>
#include <iostream>
#include <queue>
#include <list>
#include <algorithm>
#include <stack>
#include <map>
#include <time.h>
using namespace std;

int dp[13][5000];
int planted[12][12];

int main()
{
#ifdef _DEBUG
	freopen("e:\\in.txt", "r", stdin);
#endif
	memset(dp, 0, sizeof(dp));
	memset(planted, 0, sizeof(planted));
	int n, m;
	scanf("%d %d", &n, &m);
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < m; j++)
		{
			scanf("%d", &planted[i][j]);
		}
	}
	int count = 1;
	dp[0][0] = 1;
	for (int i = 1; i <= n; i++)
	{
		for (int k = 0; k < (1 << m); k++)
		{
			for (int j = 0; j < (1 << m); j++)
			{
				bool bok = true;
				for (int c = 0; c < m;c++)
				{
					if (((k >> c) & 1) == 1 && (((j >> c) & 1) == 1 || planted[i-1][c] == 0))
					{
						bok = false;
						break;
					}
					if (c > 0)
					{
						if (((k >> c) & 1) == 1 && ((k >> (c - 1)) & 1) == 1)
						{
							bok = false;
							break;
						}
					}
					if (c < m - 1)
					{
						if (((k >> c) & 1) == 1 && ((k >> (c + 1)) & 1) == 1)
						{
							bok = false;
							break;
						}
					}
				}
				if (!bok)
				{
					continue;
				}
				dp[i][k] += dp[i - 1][j];
				dp[i][k] %= 1000000000;

			}
			if (k!=0)
			{
				count += dp[i][k];
				count %= 1000000000;
			}

		}
	}
	printf("%d\n", count);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值