GC的一些小点

GC是Java中Garbage Collection (垃圾回收)的简称。

原因:New对象时,会在堆内存中划出一定大小的内存给这个对象。随着应用程序的运行,堆逐渐被填满,达到一定程度时,没有连续的内存可以来存放New的对象,这种时候JVM就会启动GC来回收 “没用”的内存。

作用:回收 堆内存 中没有引用指向的对象所占的内存,达到重新利用这些内存的目的。

目标:

1、快速释放不可达对象所占用的内存,防止应用程序出现OOM的错误。

2、回收内存时,对应用程序的影响要小。

方法:

1、引用计数法。对象存在一个引用的话其标记为1,没有引用的话标记为0,回收标记为0的对象。

优点:一旦发现某对象的引用为0,立即回收,并且可以立即访问被回收的内存;

缺点:维护未被引用的内存不需要消耗很大的资源,但是保持并不断更新引用的代价比较大,即保持引用的准确性是一个难题。另外一点是对循环引用结构的处理,两个对象互相引用,但没有其他对象引用他们的情况。

2、引用跟踪法。从某些初始存活对象出发,跟踪从这些对象发出的引用,标记为LIVE状态,遍历整个堆后才开始回收未被标记的对象。

优点:可以解决循环引用结构的问题;

缺点:由于标记阶段的存在,无法立即释放未被标记的对象。

引用跟踪法的常见算法

1、拷贝垃圾回收器

有一个 from区和一个 to区。将 from区的LIVE对象拷贝到 to区,然后回收整个 from区。下一次分配内存的时候,会从 to区开始分配。from区和 to区实现交换。

优点:LIVE对象在 to区会被重新分配,紧凑存放,避免了碎片化。

缺点:在执行过程中应用程序是被挂起的,stop-the-world。因此会对应用程序有较大的影响。典型情况, from区都为LIVE对象时, to区必须足够大。

2、标记-清理垃圾回收器

当所有对象标记了一次之后,会开始清理阶段,此时会遍历整个堆,而不仅仅是LIVE对象的集合。回收的内存会放在空闲列表中,可存在多个,一般按照内存块的大小排列。下一次New对象,会先从空闲列表中找出大小合适的内存块分配给对象。

优点:对应用程序的影响相对拷贝垃圾回收器来说较小。

缺点 :标记阶段的耗时取决于跟踪LIVE对象所有引用的时间,清理阶段取决于整个堆的大小。在两阶段完成前,应用程序处于无事可做的状态。

标记-清理垃圾回收器可分为 并行垃圾回收器 和 串行垃圾回收器 两种。

并行垃圾回收:垃圾回收是多线程并行的。大部分情况下 应用程序会挂起,stop-the-world。

并发垃圾回收:垃圾回收可以跟应用程序线程同时运行。需要有足够多的时间跟踪LIVE对象的引用,并在程序出现OOM之前回收内存。所以进行垃圾回收的时机选择很重要,另一个问题是何时执行一个需要完整堆快照的操作是安全的,因为转换阶段可能是不安全的。比如 应用程序刚刚修改过一块未被标记的区域,使该区域由非LIVE变成了LIVE。


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值