回溯算法练习day.6

51.N皇后问题

链接:. - 力扣(LeetCode)

题目描述:

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q''.' 分别代表了皇后和空位。

示例 1:

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:[["Q"]]

提示:

  • 1 <= n <= 9

思路:

使用回溯算法来遍历出所有的结果,首先抽象为树形结构,以n为3为例

我们可以使用一个变量ros来控制棋盘当前递归到的行数,当我们的行数与题目所给的n相等,则代表着我们遍历到了叶子节点,叶子节点就是我们要收集的结果,我们每一次向下递归遍历时,都要对棋盘的合法性进行判断,只有合法才能继续向下递归并且回溯,这样我们就到达不了结果不合法的叶子节点,确保我们收集的结果都是正确的

代码实现:

// 存储解决方案的三维数组
char ***ans;
// 存储当前路径的二维数组
char **path;
// 解决方案数量
int ansTop;
// 当前路径的深度
int pathTop;

// 复制路径函数
void copyPath(int n) {
    // 为临时路径分配内存
    char **tempPath = (char**)malloc(sizeof(char*) * pathTop);
    int i;
    // 复制路径
    for(i = 0; i < pathTop; ++i) {
        tempPath[i] = (char*)malloc(sizeof(char) * n + 1);
        int j;
        for(j = 0; j < n; ++j)
            tempPath[i][j] = path[i][j];
        tempPath[i][j] = '\0';

    }
    // 将临时路径存入解决方案数组中并更新解决方案数量
    ans[ansTop++] = tempPath;
}

// 检查皇后放置是否合法的函数
int isValid(int x, int y, int n) {
    int i, j;
    // 检查行和列是否有皇后冲突
    for(i = 0; i < n; ++i) {
        if(path[y][i] == 'Q' || path[i][x] == 'Q')
            return 0;
    }
    // 检查左上到右下方向是否有皇后冲突
    i = y - 1;
    j = x - 1;
    while(i >= 0 && j >= 0) {
        if(path[i][j] == 'Q')
            return 0;
        --i, --j;
    }

    // 检查右上到左下方向是否有皇后冲突
    i = y + 1;
    j = x + 1;
    while(i < n && j < n) {
        if(path[i][j] == 'Q')
            return 0;
        ++i, ++j;
    }
    // 检查左上到右下方向是否有皇后冲突
    i = y - 1;
    j = x + 1;
    while(i >= 0 && j < n) {
        if(path[i][j] == 'Q')
            return 0;
        --i, ++j;
    }

    // 检查右上到左下方向是否有皇后冲突
    i = y + 1;
    j = x - 1;
    while(j >= 0 && i < n) {
        if(path[i][j] == 'Q')
            return 0;
        ++i, --j;
    }
    return 1;
}

// 回溯函数,用于尝试放置皇后
void backTracking(int n, int depth) {
    // 如果当前路径长度等于n,则表示找到一个解决方案
    if(pathTop == n) {
        copyPath(n); // 复制路径到解决方案数组中
        return;
    }
    int i;
    // 遍历当前行的所有位置
    for(i = 0; i < n; ++i) {
        // 如果当前位置合法,则放置皇后,并继续深度优先搜索
        if(isValid(i, depth, n)) {
            path[depth][i] = 'Q'; // 放置皇后
            ++pathTop; // 更新当前路径长度

            backTracking(n, depth + 1); // 递归搜索下一行

            // 进行回溯,将当前位置重置为'.'
            path[depth][i] = '.';
            --pathTop; // 恢复当前路径长度
        }
    }
}

// 初始化路径函数,将所有位置初始化为'.'
void initPath(int n) {
    int i, j;
    for(i = 0; i < n; i++) {
        path[i] = (char*)malloc(sizeof(char) * n + 1);
        for(j = 0; j < n; j++)
            path[i][j] = '.';
        path[i][j] = '\0';
    }
}

// 主函数,解决N皇后问题
char *** solveNQueens(int n, int* returnSize, int** returnColumnSizes){
    ans = (char***)malloc(sizeof(char**) * 400); // 分配解决方案数组的内存空间
    path = (char**)malloc(sizeof(char*) * n); // 分配路径数组的内存空间
    ansTop = pathTop = 0; // 初始化解决方案数量和当前路径长度
    initPath(n); // 初始化路径数组
    backTracking(n, 0); // 开始回溯搜索
    // 设置返回结果的大小
    *returnSize = ansTop;
    // 设置每个解决方案的列数
    *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
    for(int i = 0; i < ansTop; ++i) {
        (*returnColumnSizes)[i] = n;
    }
    return ans; // 返回解决方案数组
}

37.解数独

链接:. - 力扣(LeetCode)

题目描述:

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。

示例 1:

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:


提示:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字或者 '.'
  • 题目数据 保证 输入数独仅有一个解

思路:

使用回溯算法解决,但是需要使用两个for循环,一个for循环用来遍历行,另一个for循环用来遍历列,通过两个for循环确定我们每个格子,让递归函数去遍历1-9,判断哪个数值能够进行放入格子

回溯实现

1.确定参数和返回值,返回值应该为bool类型,因为我们只需要搜索出一个结果,即使有其他的结果也不需要再去搜索,而之前的练习中,我们都是需要去搜索多个结果,因此返回值为空,参数为棋盘

2.确定终止条件,包含在单层递归中

3.单层递归处理,当遇到空格时,递归尝试放入1-9,如果没有符合条件的情况,返回假,如果符合情况则存入,进入下一层递归,再进行回溯

代码实现:

// 检查给定位置是否可以放置数值k
bool isvalue(char** board, int row, int col, int k) {
    // 检查列是否有相同的数值
    for (int i = 0; i < 9; i++) {
        if (board[i][col] == k) {
            return false;
        }
    }
    // 检查行是否有相同的数值
    for (int j = 0; j < 9; j++) {
        if (board[row][j] == k) {
            return false;
        }
    }
    // 检查对应的3x3小方格内是否有相同的数值
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) {
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == k) {
                return false;
            }
        }
    }
    // 如果都没有相同的数值,则返回true,表示可以放置数值k在该位置
    return true;
}

// 回溯求解数独
bool backtracking(char **board, int boardSize, int *boardColSize)
{
    // 遍历数独中的每一个格子
    for(int i = 0; i < boardSize ; i++)
    {
        for(int j = 0 ; j < boardSize ; j++)
        {
            // 如果当前格子已经有数值,则跳过
            if(board[i][j] != '.')
                continue;
            // 如果当前格子没有数值,尝试填入数值1到9
            if(board[i][j] == '.')
            {
                for(int k = '1'; k <= '9' ; k++)
                {
                    // 如果当前数值k可以放置在该位置
                    if(isvalue(board,i,j,k))
                    {
                        // 将数值k放置在该位置
                        board[i][j] = k;
                        // 递归调用backtracking函数继续填充下一个位置
                        if(backtracking(board,boardSize, boardColSize))
                            return true; // 如果成功找到解,则返回true
                        // 如果递归调用返回false,说明当前数值k不能满足数独的解,回溯到上一步
                        board[i][j] = '.';
                    }

                }
            }
            return false; // 如果所有数值都尝试过但都不能满足数独的解,返回false
        }
    }
    return true; // 如果成功填满所有格子,则返回true
}

// 解决数独问题的入口函数
void solveSudoku(char** board, int boardSize, int* boardColSize){
    // 调用backtracking函数进行求解
    bool res = backtracking(board, boardSize, boardColSize);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值