51.N皇后问题
题目描述:
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将
n
个皇后放置在n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数
n
,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中
'Q'
和'.'
分别代表了皇后和空位。示例 1:
输入:n = 4 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]] 解释:如上图所示,4 皇后问题存在两个不同的解法。示例 2:
输入:n = 1 输出:[["Q"]]提示:
1 <= n <= 9
思路:
使用回溯算法来遍历出所有的结果,首先抽象为树形结构,以n为3为例
我们可以使用一个变量ros来控制棋盘当前递归到的行数,当我们的行数与题目所给的n相等,则代表着我们遍历到了叶子节点,叶子节点就是我们要收集的结果,我们每一次向下递归遍历时,都要对棋盘的合法性进行判断,只有合法才能继续向下递归并且回溯,这样我们就到达不了结果不合法的叶子节点,确保我们收集的结果都是正确的
代码实现:
// 存储解决方案的三维数组 char ***ans; // 存储当前路径的二维数组 char **path; // 解决方案数量 int ansTop; // 当前路径的深度 int pathTop; // 复制路径函数 void copyPath(int n) { // 为临时路径分配内存 char **tempPath = (char**)malloc(sizeof(char*) * pathTop); int i; // 复制路径 for(i = 0; i < pathTop; ++i) { tempPath[i] = (char*)malloc(sizeof(char) * n + 1); int j; for(j = 0; j < n; ++j) tempPath[i][j] = path[i][j]; tempPath[i][j] = '\0'; } // 将临时路径存入解决方案数组中并更新解决方案数量 ans[ansTop++] = tempPath; } // 检查皇后放置是否合法的函数 int isValid(int x, int y, int n) { int i, j; // 检查行和列是否有皇后冲突 for(i = 0; i < n; ++i) { if(path[y][i] == 'Q' || path[i][x] == 'Q') return 0; } // 检查左上到右下方向是否有皇后冲突 i = y - 1; j = x - 1; while(i >= 0 && j >= 0) { if(path[i][j] == 'Q') return 0; --i, --j; } // 检查右上到左下方向是否有皇后冲突 i = y + 1; j = x + 1; while(i < n && j < n) { if(path[i][j] == 'Q') return 0; ++i, ++j; } // 检查左上到右下方向是否有皇后冲突 i = y - 1; j = x + 1; while(i >= 0 && j < n) { if(path[i][j] == 'Q') return 0; --i, ++j; } // 检查右上到左下方向是否有皇后冲突 i = y + 1; j = x - 1; while(j >= 0 && i < n) { if(path[i][j] == 'Q') return 0; ++i, --j; } return 1; } // 回溯函数,用于尝试放置皇后 void backTracking(int n, int depth) { // 如果当前路径长度等于n,则表示找到一个解决方案 if(pathTop == n) { copyPath(n); // 复制路径到解决方案数组中 return; } int i; // 遍历当前行的所有位置 for(i = 0; i < n; ++i) { // 如果当前位置合法,则放置皇后,并继续深度优先搜索 if(isValid(i, depth, n)) { path[depth][i] = 'Q'; // 放置皇后 ++pathTop; // 更新当前路径长度 backTracking(n, depth + 1); // 递归搜索下一行 // 进行回溯,将当前位置重置为'.' path[depth][i] = '.'; --pathTop; // 恢复当前路径长度 } } } // 初始化路径函数,将所有位置初始化为'.' void initPath(int n) { int i, j; for(i = 0; i < n; i++) { path[i] = (char*)malloc(sizeof(char) * n + 1); for(j = 0; j < n; j++) path[i][j] = '.'; path[i][j] = '\0'; } } // 主函数,解决N皇后问题 char *** solveNQueens(int n, int* returnSize, int** returnColumnSizes){ ans = (char***)malloc(sizeof(char**) * 400); // 分配解决方案数组的内存空间 path = (char**)malloc(sizeof(char*) * n); // 分配路径数组的内存空间 ansTop = pathTop = 0; // 初始化解决方案数量和当前路径长度 initPath(n); // 初始化路径数组 backTracking(n, 0); // 开始回溯搜索 // 设置返回结果的大小 *returnSize = ansTop; // 设置每个解决方案的列数 *returnColumnSizes = (int*)malloc(sizeof(int) * ansTop); for(int i = 0; i < ansTop; ++i) { (*returnColumnSizes)[i] = n; } return ans; // 返回解决方案数组 }
37.解数独
题目描述:
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。- 数字
1-9
在每一列只能出现一次。- 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)数独部分空格内已填入了数字,空白格用
'.'
表示。示例 1:
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]] 输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]] 解释:输入的数独如上图所示,唯一有效的解决方案如下所示:提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
思路:
使用回溯算法解决,但是需要使用两个for循环,一个for循环用来遍历行,另一个for循环用来遍历列,通过两个for循环确定我们每个格子,让递归函数去遍历1-9,判断哪个数值能够进行放入格子
回溯实现
1.确定参数和返回值,返回值应该为bool类型,因为我们只需要搜索出一个结果,即使有其他的结果也不需要再去搜索,而之前的练习中,我们都是需要去搜索多个结果,因此返回值为空,参数为棋盘
2.确定终止条件,包含在单层递归中
3.单层递归处理,当遇到空格时,递归尝试放入1-9,如果没有符合条件的情况,返回假,如果符合情况则存入,进入下一层递归,再进行回溯
代码实现:
// 检查给定位置是否可以放置数值k bool isvalue(char** board, int row, int col, int k) { // 检查列是否有相同的数值 for (int i = 0; i < 9; i++) { if (board[i][col] == k) { return false; } } // 检查行是否有相同的数值 for (int j = 0; j < 9; j++) { if (board[row][j] == k) { return false; } } // 检查对应的3x3小方格内是否有相同的数值 int startRow = (row / 3) * 3; int startCol = (col / 3) * 3; for (int i = startRow; i < startRow + 3; i++) { for (int j = startCol; j < startCol + 3; j++) { if (board[i][j] == k) { return false; } } } // 如果都没有相同的数值,则返回true,表示可以放置数值k在该位置 return true; } // 回溯求解数独 bool backtracking(char **board, int boardSize, int *boardColSize) { // 遍历数独中的每一个格子 for(int i = 0; i < boardSize ; i++) { for(int j = 0 ; j < boardSize ; j++) { // 如果当前格子已经有数值,则跳过 if(board[i][j] != '.') continue; // 如果当前格子没有数值,尝试填入数值1到9 if(board[i][j] == '.') { for(int k = '1'; k <= '9' ; k++) { // 如果当前数值k可以放置在该位置 if(isvalue(board,i,j,k)) { // 将数值k放置在该位置 board[i][j] = k; // 递归调用backtracking函数继续填充下一个位置 if(backtracking(board,boardSize, boardColSize)) return true; // 如果成功找到解,则返回true // 如果递归调用返回false,说明当前数值k不能满足数独的解,回溯到上一步 board[i][j] = '.'; } } } return false; // 如果所有数值都尝试过但都不能满足数独的解,返回false } } return true; // 如果成功填满所有格子,则返回true } // 解决数独问题的入口函数 void solveSudoku(char** board, int boardSize, int* boardColSize){ // 调用backtracking函数进行求解 bool res = backtracking(board, boardSize, boardColSize); }