博弈论入门(1)——游戏与必胜策略

1.硬币游戏:

给出k个数字a1, a2, a3, ..., ak,且至少有一个数字为1(ps:是为了保证最后一定有解,否则当剩下的硬币数比最少的 xi 都要少,就无解了)。一开始有x枚硬币,A、B两人轮流取一定数目硬币,且取的数目必须在集合a1, a2, a3, ..., ak中,取走最后几枚硬币的人获胜,A先取。问:两人都采取最优策略的情况下,谁会获胜?

分析:假设最后轮到某个人取时,没有硬币了,那么这个状态为必败态,可以用dp将状态从0枚硬币开始往前推,

就可以得出所有可能的硬币取值所对应的状态是必胜还是必败。那么,必胜态和必败态之间是怎么转移的呢?


假设在我们面前有s枚硬币,我们可以通过取走x[i]枚,使得剩下的硬币数目为s - x[i] = t。现在我们考虑s和t之间的状态转移:

  1. 对于s来说,如果任何一种尝试,取走x[i]后得到的t都是必胜态(对方的),那么此时的s就处在一个必败态(自己的)。
  2. 反过来,如果其中存在某种尝试,使得取走x[i]后得到的t是必败态(对方的),那么我们肯定会沿着这个方向转移,此时的s就一定处在必胜态(自己的)。
由上面的状态转移关系,易得状态转移方程win[i] |= !win[i-a[1...n]](i > a[ j ],且win[i]初始值为false)。就是在i > a[j]的条件下(因为要保证win的索引值为非负),只要存在其中一个win[i-a[j]]为false,就可以使得win[i]必胜。
void solve()
{
    win[0] = false; //dp的边界条件,最小的子问题
    for(int i = 1; i <= x; ++i)
    {
        win[i] = false;
        for(int j = 0; j < n; ++j)
        {
            win[i] |= (i > a[j] && !win[i-a[j])
        }
    }
}
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值