论文阅读
oneTaken
生活有很多种方式。
展开
-
[论文阅读]MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
arxiv: https://arxiv.org/abs/1704.04861 论文翻译:mobilenet(上),mobilenet(下)。 论文阅读笔记参考:MobileNets 论文笔记. 代码实现: 1. google在tensorflow中放出了预训练的模型,根据宽度系数[1,0.75,0.5,0.25] 与 分辨率大小[224,192,160,128]组合一共16个模型,模型原创 2017-09-23 15:04:56 · 972 阅读 · 0 评论 -
[论文阅读]Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
ILRVRC 2015 scese classification challenge第一。 在类别不平衡时的采样策略: >Class-aware Sampling. The Places2 challenge dataset has more than 8M training images in total. The numbers of images in different classes原创 2017-09-12 10:23:03 · 1339 阅读 · 0 评论 -
[论文阅读] Low-shot Visual Recognition by Shrinking and Hallucinating Features
arxiv : https://arxiv.org/abs/1606.02819v3 code: https://github.com/facebookresearch/low-shot-shrink-hallucinate 类别样本数很少时候的分类。使用方法为: 实验细节:对于类别不平衡的处理办法为: 处理方法1不理解。 - we oversample the novel class原创 2017-10-31 18:11:15 · 3282 阅读 · 0 评论 -
[论文阅读] Focal Loss for Dense Object Detection
arxiv: https://arxiv.org/pdf/1708.02002.pdf 何凯明 homepage: http://kaiminghe.com/paper 写得很好,可以多读。1.解决的问题: 在稠密目标检测中,产生的目标候选区域中正负样本数量悬殊,大部分都是对 loss没有贡献的easy background example. 很容易进行分类。2.相关 paper: R-CNN原创 2017-10-27 18:14:14 · 2079 阅读 · 0 评论