康托展开及其逆运算【cantor】

Cantor:
把一个整数X展开成如下形式:
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!
其中,a为整数,并且0<=a[i]<i(1<=i<=n)。

康托展开的最基本应用应该就是,求一个排列(按字典数)的序号(就是第几个)。
而其逆运算就是求序号对应的排列。

例如, 1 2 3 这三个数按字典数来进行一个排列得到,123(1) ,132(2) ,213(3) ,213(4) , 312(5) ,321(6)。

比如说让求排列为321的序号是几?
第一位是一个3,排列(以小于3的数字为第一位的)一定排在该排列的后面,这样的排列有2*2!个。
第二位是一个2,同理,这样的排列有1*1!个。
第三位是一个1,为0*0!。所以321的序号就是2*2!+1*1!+0*0+1=6。

比如说让求序号为6的排列为什么(已知讨论的是1 2 3的全排列)?
现将序号减去1,为5。
第一位为5/2!=2余1,也就是说第一位要比任意其他排列的第一位大2,至少为3,在该例子也就是3。
第二位为1/1!=1余0,在该例子中为2。
第三为只能为1了。

这个例子比较弱,来一组比较强的例子。

再举个例子:
1324是{1,2,3,4}排列数中第几个大的数:
第一位是1小于1的数没有,是0个 0*3!
第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。
第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个。
1324是序号为3的排列了。

对于求一个排列的序号以及序号对应的排列,cantor展开是比较好用的。
练习一下:
nyoj 139 我排第几个点击康托展开
裸的cantor展开求序号。
代码:
 
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define LL long long
using namespace std;

const int P[]={0,1,2,6, 24,120,720,5040,40320,362880,3628800,39916800};
const int N=13;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        char arr[N];
        LL ans=0;
        scanf("%s",arr);
        for(int i=0;i<12;i++){
            int cnt=0;
            for(int j=i+1;j<12;j++)
            if(arr[i]>arr[j]) cnt++;
            ans+=P[11-i]*cnt;
        }
        printf("%lld\n",ans+1);
    }
    return 0;
}        

nyoj 第几是谁? 点击cantor展开的逆运算
裸的cantor展开的逆运算。
代码:
 
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define BUG puts("bingo!")
#define LL long long
#define CLR(arr,val) memset(arr,val,sizeof(arr))
using namespace std;

const char A[]={"0abcdefghijkl"};
const int P[]={1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800};
const int N=13;
bool hash[N];
int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        CLR(hash,0);
        LL m,ans[N];
        scanf("%lld",&m);
        m-=1;
        for(int i=0;i<12;i++){
            LL j,cnt;
            cnt=m/P[11-i];
            for(j=1;j<=12;j++){
                if(!hash[j]){
                    if(cnt==0) break;
                    cnt--;
                }
            }
            ans[i]=j;
            hash[j]=true;
            m=m%P[11-i];
        }
        for(int i=0;i<12;i++)
        printf("%c",A[ans[i]]);
        printf("\n");
    }
    return 0;
}        

一个小小的知识点,不需要太长的时间就可以学习了,。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值