题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1348
题目的意思是:求一个点到线段的最短距离和最长距离。。
最长距离比较容易,就是求点到线段两个端点较长的那个距离就是ans。
最短距离就比较有意思了。。。
可能的情况就是点到线段的垂线的垂足在线段内,还有就是垂足在线段外。。。
在线段内的话,那么应用叉积求面积+底面长度可以求得垂线长度也就是最短距离。。
如果在线段外的话,最短距离就是点到线段的两个端点的最小值。。
那么问题就来了。。怎么判断垂足在线段内还是在线段外的呢??
详细见代码。 - - 。。。
Code:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1);
//点
struct POINT
{
double x, y;
POINT(){ }
POINT(double a, double b){
x = a;
y = b;
}
};
//线段
struct Seg
{
POINT a, b;
Seg() { }
Seg(POINT x, POINT y){
a = x;
b = y;
}
};
//直线
struct Line
{
POINT a, b;
Line() {}
Line(POINT x, POINT y){
a = x;
b = y;
}
};
//叉乘
double cross(POINT o, POINT a, POINT b)
{
return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
}
//求两点间的距离
double dis(POINT a, POINT b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
Seg s;
POINT p;
double L;
//点到直线的距离..
double PointToLine(POINT p, Line l)
{
return fabs(cross(p, l.a, l.b)) / dis(l.a, l.b);
}
//线段到直线的距离..
double PointToSeg(POINT p, Seg s)
{
POINT tmp = p;
tmp.x += s.a.y - s.b.y;
tmp.y += s.b.x - s.a.x;
if(cross(s.a, p, tmp) * cross(s.b, p, tmp) >= 0){
return min(dis(p, s.a), dis(p, s.b));
}
return PointToLine(p, Line(s.a, s.b));
}
void solve()
{
double ans1 = PointToSeg(p, s), ans2 = max(dis(p, s.a), dis(p, s.b));
printf("%.2lf\n%.2lf\n", ans1 > L ? ans1 - L : 0, ans2 > L ? ans2 - L : 0);
return ;
}
int main()
{
// freopen("11.txt", "r", stdin);
while(~scanf("%lf %lf %lf %lf", &s.a.x, &s.a.y, &s.b.x, &s.b.y)){
scanf("%lf %lf %lf", &p.x, &p.y, &L);
solve();
}
return 0;
}
--->
好吧,还需要好好的学习。。。