/*
分组背包.
问题:N件物品和体积V的背包.第i件物品的体积是v[i],价值是w[i].
把这些物品分为若干组,每组物品互相冲突,最多选一件.
求解:哪些物品放入背包中科院事物品价值最大.
特点:每组最多选一件,要么该组选一件,要么不选.
状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[k]]+w[k]|其中k件物品属于第i组);
第i组放入体积为j的背包中最大价值是多少.
伪代码:for 1...i组
for V....0
for 所有的k属于i组
dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
然而一般题目中不是直接给你个分组背包的裸题,往往都的变形的一些题目,而能够识别出
其是分组背包的变形就尤为重要.
*/
//Hud 1712 ACboy needs your help.
#include<cstdio>
#include<algorithm>
#include<memory>
#include<cstring>
#define max(a,b) a>b?a:b
using namespace std;
int main()
{
//freopen("in.txt","r",stdin);
int N,M;
while(scanf("%d%d",&N,&M)&&(N||M))
{
int dp[10005],A[102][102];
memset(dp,0,sizeof(dp));
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++)
scanf("%d",&A[i][j]);
for(int i=1;i<=N;i++)
{
for(int j=M;j>=1;j--)
{
for(int k=1;k<=j;k++)//注意内部循环的条件.
dp[j]=max(dp[j],dp[j-k]+A[i][k]);
}
}
printf("%d\n",dp[M]);
}
}
分组背包解析[以 Hud 1712 Acboy needs your help 为例]
最新推荐文章于 2023-12-25 15:27:05 发布