UVa 108: Maximum Sum

这篇博客介绍了如何解决UVa 108题,通过将n*m矩阵转化为1*m矩阵,利用动态规划求最大连续子串和找到最大子矩阵。博主采用暴力枚举所有可能的行数,并用动态规划方法求解,最后展示了解题代码。
摘要由CSDN通过智能技术生成

这道题用暴力解法+动态规划。分析如下:

对于某个1*m的矩阵,即一个数列,求其maximal sub-rectangle,可以通过求最大长连续字串和来求得(这个用到了动态规划)。

那么对于n*m的矩阵,将每列的各个数字求和,将得到一个1*m的矩阵,用上文所说的方法求得的最大和即为该n*m矩阵的所有行数为n的子矩阵中的最大子矩阵和。

那么这道题,通过枚举所有行数为1、2、3.....N 的矩阵(暴力),分别用上述方法压缩矩阵求最大连续字串和,找出其中最大值,即为所求结果。

我的解题代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <algorithm>
using namespace std;

int table[100][100];
int sum[100];
int N;

int max_continuous_sum()
{
	int maxs=0,s=0;
	for(int i=0; i<N; i++)
	{
		if(s>=0) s+=sum[i];
		else s=sum[i];
		maxs = maxs>s ? maxs : s;
	}
	return maxs;
}
int main()
{
	cin >> N;
	int maxsum=0;
	int tmp;
	for(int i=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值