题目描述
小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏。矩阵游戏在一个N
*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:行交换操作:选择
矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换
对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑
色。对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程
序来判断这些关卡是否有解。
输入
第一行包含一个整数T,表示数据的组数。接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大
小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。
输出
输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。
样例输入
2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0
样例输出
No
Yes
【数据规模】
Yes
【数据规模】
对于100%的数据,N ≤ 200
题解:这题很明显就是二分图完美匹配
建边方法:
先建一个n个点的左集合,以及一个n个点的右集合,对于每一个黑棋子(x,y),把左集合的x和右集合的y连一条边,最后在建好的图上跑匈牙利最大匹配看看结果是不是n,是的话输出yes,否则no
我是用网络流dinic在做最大匹配的,不会匈牙利的飘过~~~~~
#include <iostream>
#include <stdio.h>
#include <queue>
using namespace std;
const int maxlen=200005;
const int maxn=5005;
const int oo=2147483647;
int head[maxn];
int cnt[maxn];
int dis[maxn];
int vis[maxn];
int i,j,n,len,s,t,x,tt;
queue <int> q;
struct edge{
int u,v,c,f,next;
edge(){u=v=c=f=0;next=-1;}
edge(int x,int y,int z,int w){
u=x;v=y;c=z;f=w;
}
} e[maxlen];
void add(int u,int v,int c,int f){
len++;
e[len]=edge(u,v,c,f);
e[len].next=head[u];
head[u]=len;
}
int bfs(){
int x;
for(i=0;i<=2*n+1;i++)
vis[i]=0;
dis[s]=0;
vis[s]=1;
q.push(s);
while(!q.empty()){
x=q.front();
for(i=head[x];i!=-1;i=e[i].next)
if(!vis[e[i].v]&&e[i].c>e[i].f){
q.push(e[i].v);
dis[e[i].v]=dis[x]+1;
vis[e[i].v]=1;
}
q.pop();
}
return vis[t];
}
int dfs(int x,int a){
if(x==t||a==0)
return a;
int flow=0;
int f;
int &i=cnt[x];
for(i=head[x];i!=-1;i=e[i].next){
if((dis[e[i].v]==dis[x]+1)&&(f=dfs(e[i].v,min(a,e[i].c-e[i].f)))){
flow+=f;
a-=f;
e[i].f+=f;
e[i^1].f-=f;
if(a==0)
break;
}
}
return flow;
}
int dinic(){
int flow=0;
while(bfs()){
for(i=0;i<=2*n+1;i++)
cnt[i]=0;
flow+=dfs(s,oo);
}
return flow;
}
void work(){
scanf("%d",&n);
for(i=0;i<=2*n+1;i++)
head[i]=-1;
len=-1;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++){
scanf("%d",&x);
if(x){
add(i,j+n,1,0);
add(j+n,i,0,0);
}
}
for(i=1;i<=n;i++){
add(0,i,1,0);
add(i,0,0,0);
}
for(i=1;i<=n;i++){
add(i+n,2*n+1,1,0);
add(2*n+1,i+n,0,0);
}
s=0;t=2*n+1;
//printf("%d\n",dinic());
//printf("%d\n",n);
if(dinic()==n)
puts("Yes");
else
puts("No");
}
int main(){
scanf("%d",&tt);
while(tt--)
work();
return 0;
}