12.7 bzoj1059[ZJOI2007]矩阵游戏

题目描述

  小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏。矩阵游戏在一个N
*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:行交换操作:选择
矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换
对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑
色。对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程
序来判断这些关卡是否有解。

输入

  第一行包含一个整数T,表示数据的组数。接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大
小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。

输出

  输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。

样例输入

2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0

样例输出

No
Yes
【数据规模】

对于100%的数据,N ≤ 200

题解:这题很明显就是二分图完美匹配

建边方法:

先建一个n个点的左集合,以及一个n个点的右集合,对于每一个黑棋子(x,y),把左集合的x和右集合的y连一条边,最后在建好的图上跑匈牙利最大匹配看看结果是不是n,是的话输出yes,否则no

我是用网络流dinic在做最大匹配的,不会匈牙利的飘过~~~~~

#include <iostream>
#include <stdio.h>
#include <queue>
using namespace std;

const int maxlen=200005;
const int maxn=5005;
const int oo=2147483647;

int head[maxn];
int cnt[maxn];
int dis[maxn];
int vis[maxn];
int i,j,n,len,s,t,x,tt;

queue <int> q;

struct edge{
	int u,v,c,f,next;
	edge(){u=v=c=f=0;next=-1;}
	edge(int x,int y,int z,int w){
		u=x;v=y;c=z;f=w;
	}
} e[maxlen];

void add(int u,int v,int c,int f){
	len++;
	e[len]=edge(u,v,c,f);
	e[len].next=head[u];
	head[u]=len;
}

int bfs(){
	int x;
	for(i=0;i<=2*n+1;i++)
	    vis[i]=0;
	dis[s]=0;
	vis[s]=1;
	q.push(s);
	while(!q.empty()){
		x=q.front();
		for(i=head[x];i!=-1;i=e[i].next)
		    if(!vis[e[i].v]&&e[i].c>e[i].f){
		        q.push(e[i].v);
		        dis[e[i].v]=dis[x]+1;
		        vis[e[i].v]=1;
		    }
		q.pop();
	}
	return vis[t];
}

int dfs(int x,int a){
	if(x==t||a==0)
	    return a;
	int flow=0;
	int f;
	int &i=cnt[x];
	for(i=head[x];i!=-1;i=e[i].next){
		if((dis[e[i].v]==dis[x]+1)&&(f=dfs(e[i].v,min(a,e[i].c-e[i].f)))){
			flow+=f;
			a-=f;
			e[i].f+=f;
			e[i^1].f-=f;
			if(a==0)
			    break;
		}
	}
	return flow;
}

int dinic(){
	int flow=0;
	while(bfs()){
		for(i=0;i<=2*n+1;i++)
		    cnt[i]=0;
		flow+=dfs(s,oo);
	}
	return flow;
}

void work(){
	scanf("%d",&n);
	for(i=0;i<=2*n+1;i++)
	    head[i]=-1;
	len=-1;
	for(i=1;i<=n;i++)
	    for(j=1;j<=n;j++){
	        scanf("%d",&x);
	        if(x){
	            add(i,j+n,1,0);
	            add(j+n,i,0,0);
	        }   
	    }
    for(i=1;i<=n;i++){
        add(0,i,1,0);
        add(i,0,0,0);
    }
    for(i=1;i<=n;i++){
        add(i+n,2*n+1,1,0);
        add(2*n+1,i+n,0,0);   
    }
    s=0;t=2*n+1;
    //printf("%d\n",dinic());
    //printf("%d\n",n);
    if(dinic()==n)
        puts("Yes");
    else
        puts("No");
}

int main(){
	scanf("%d",&tt);
	while(tt--)
	    work();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值