机器学习
文章平均质量分 62
SummmerSnow
这个作者很懒,什么都没留下…
展开
-
Octave 命令
注:本文是基于斯坦福的机器学习课程 1. A=[1 2;3 4;5 6] 这样就定义了一个矩阵 size(A)===>3 3 如果是向量:B=[1 2 3 4] length(B)=4 2.修改路径:cd 'c:\snow' load 1.dat 加载文件 save 1 保存文件 save hello.m...原创 2015-11-22 16:08:05 · 11702 阅读 · 3 评论 -
Logistic 回归
[TOC] Logister 回归虽然名称叫做回归,但其实是一种分类模型; 在周志华老师的西瓜书中,把这一方法叫做:对数几率回归,其实看完整个推导过程,感觉这个名称更合适一些。几率就是一个事件发生的概率和不发生的概率的比值;问题描述:已知某些样本x,具有n个特征值w1,w2...wnw1,w2...wnw1,w2...w_n, 以及对应的标签yyy; 对样本x进行正确分类;解...原创 2018-09-15 20:35:45 · 794 阅读 · 0 评论 -
F1 score | why softmax | loglikehood & cross-entropy
F1 score | why softmax | loglikehood & cross-entropy最近找工作面试涉及到了很多研一时候学习的基础知识,很多都忘记了,重新整理一下相关的问题,更侧重和NLP相关的一些知识。F1 scoreaccuracyprecisionrecallf1 score一位同学面试的时候设计被问到,机器翻译中的BLEU的计算,是以...原创 2018-03-23 22:19:30 · 564 阅读 · 0 评论 -
Tensorflow创建循环神经网络
虽然已经接触deep learning很长一段时间了,也看了很久rnn相关的代码,但是突然想用tensorflow实现一些功能的时候,突然发现丝毫没有头绪,找了一些资料,学习了一波,记录一下。一、tensorflow实现RNN celltensorflow由于不同的版本改动较大,在1.0版本之后,可以使用如下语句来创建一个cell:from tensorflow.contrib import rn原创 2017-05-25 21:31:34 · 2411 阅读 · 1 评论 -
概率 & 采样
Inference and Decision some notation: p(D|\theta) 表示的并不是一个条件概率,这是一个关于\theta的函数; p(x_i|\theat)表示的是一个PDF,这里的\theta是一个定值;生成模型: 根据P(x|y) 和p(x), 利用贝叶斯求出p(y|x); 判别模型:直接求出(y|x) 这些模型分为两个步骤: inference:原创 2017-05-15 17:08:47 · 452 阅读 · 0 评论 -
tensorflow- MNIST机器学习入门
tensorflow mnist原创 2016-10-02 15:30:33 · 1327 阅读 · 0 评论 -
分类问题
特征值为空如何处理?参考资料: https://www.zhihu.com/search?type=content&q=%E7%89%B9%E5%BE%81%E5%80%BC%E4%B8%BA%E7%A9%BA 最后决定取均值了。 不过这个问题还是值得思考的,依研究问题的不同,做法也不尽相似,基本思想就是根据其他数据信息来进行填充,这对于图像处理来说是个不错的选择。仔细想想,我的特征值是距离,原创 2016-10-22 15:39:32 · 359 阅读 · 0 评论 -
EM 算法
因为时间原因实在是来不及一一看那些书籍,经学长指点,直接学习统计翻译的em算法,然后是基于短语的概率翻译表提取,再者就是去学习bp神经网络。em在ibm model1中的应用,看了很久才看明白,当我以为自己看懂了的时候,学长让我用一句话概括一下em,我竟一时语塞,才惊觉其实并不是很懂。于是老老实实去翻看李航老师的《统计学习方法》,第九章详细介绍了em算法,也加深了自己的印象。什么是EM简单来说,em原创 2016-07-04 23:35:16 · 662 阅读 · 0 评论 -
DBScan 算法
DBScan 是一种基于密度的聚类算法,主要算法流程如下图:DBSCAN(D, eps, MinPts) C = 0 //类别标示 for each unvisited point P in dataset D //遍历 mark P as visited原创 2016-04-26 15:40:08 · 661 阅读 · 0 评论 -
均匀分布差生正态分布
文章目录中心极限定理中心极限定理中心极限定理是说,n只要越来越大,这n个数的样本均值会趋近于正态分布,并且这个正态分布以u为均值,sigma^2/n为方差。换句话说,假设我们与样本x1,x2....xnx1, x2....x_nx1,x2....xn, 并且已经知道E(x)=u,D(x)=σ2E(x) = u, D(x) = \sigma^2E(x)=u,D(x)=σ2;令变量Y=x1+...原创 2018-09-17 21:57:42 · 1006 阅读 · 0 评论