归并排序求逆序对



题目:

现在给定一个有 N 个数的数列 Ai。若对于 i < j,有 Ai > Aj,则称 (i, j) 为数列的一个逆序对。

例如,<2, 3, 8, 6, 1> 有五个逆序对,分别是 (1, 5), (2, 5), (3, 4), (3, 5), (4, 5)

现在请你求出一个给定数列的逆序对个数。

提示:排序算法可以解决这个问题。

输入格式

一个整数 T,表示有多少组测试数据。

每组测试数据第一行是一个正整数 N (1 <= N <= 100000),表示数列中有 N 个数字。

接下来一行包含 N 个正整数,代表对应的数列。

保证所有正整数小于 100000000。

输出格式

对于每组数据,输出一行,表示逆序对的个数。

样例输入
1
5
2 3 8 6 1
样例输出
5

注意:
本题如果用普通的双重循环遍历求解问题,时间复杂度为O(n^2)会导致超时;
采用归并排序,时间复杂度为O(nlogn)不会超时;
有一个小陷阱,就是逆序对的个数可能会超过int的范围,因为若整数序列是从100,000,000递减,那么逆序对的个数就会是
100,000,000*(100,000,000+1)/2, 所以需要将其设置为long long 类型。

下面是本人的代码:
#include<stdio.h>
#include<malloc.h>
#define MAX 100000

int N;
long long count;
int a[MAX];

void print(int a[])
{
	int i;
	for(i=0;i<N;i++)
		printf("%d ",a[i]);
	printf("\n");
}
void merge(int a[], int low,int mid, int high)
{
	//printf("对下标%d--%d排序\n",low,high);
	int* temp=(int*)malloc(sizeof(int)*(high-low+1));
	int   i=low, j=mid+1,ti=0;
	while(i<=mid && j<=high)
	{
		if(a[i]<=a[j])
			temp[ti++]=a[i++];
		else
		{
			temp[ti++]=a[j++];
			count=count+(mid-i+1);   //关键:如果a[i]>a[j], 那么a[i]到a[mid]都大于a[j], 逆序对个数增加mid-i+1个
		}
	}
	while(i<=mid)
	{
		temp[ti++]=a[i++];
		count+=high-j+1;
	}
	while(j<=high)
		temp[ti++]=a[j++];

	for(i=0;i<ti;i++)
		a[low+i]=temp[i];

	//print(a);
}
void mergeSort(int a[], int low,int high)
{
	if(low<high)
	{
		int mid=(low+high)/2;
		mergeSort(a,low,mid);
		mergeSort(a,mid+1,high);
		merge(a,low,mid,high);
	}
}

void testTwo()
{
	int  i, j;
	scanf("%d",&N);
	for(i=0;i<N;i++)
		scanf("%d",&a[i]);

	mergeSort(a,0,N-1);
	//printf("排序结果:\n");
	//for(i=0;i<N;i++)
		//printf("%d ",a[i]);
	printf("%lld\n",count);
};

int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		count=0;
		testTwo();
	}
}

#include <bits/stdc++.h>
using namespace std;

const int N = 1e5+5;

typedef long long LL;

int n, a[N], b[N];

LL merge_sort(int l, int r) {
	if (l + 1 == r) return 0;
	int m = (l + r) / 2;
	LL ret = merge_sort(l, m) + merge_sort(m, r);
	for (int i = l, j = m, k = l; k < r; ++k)
		if (i == m) b[k] = a[j++];
		else if (j == r) b[k] = a[i++];
		else if (a[i] <= a[j]) b[k] = a[i++];
		else b[k] = a[j++], ret += m - i;
	for (int i = l; i < r; ++i) a[i] = b[i];
	return ret;
}

int main() {
	int T; cin >> T;
	while (T--) {
		cin >> n;
		for (int i = 0; i < n; ++i) cin >> a[i];
		LL ans = merge_sort(0, n);
		cout << ans << endl;
	}
}





                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值