定义:
给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
构造:
1.构成初始集合
对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。)
2.选取左右子树
在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
3.删除左右子树
从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
4.重复二和三两步,直到集合F中只有一棵二叉树为止。
对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。)
2.选取左右子树
在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
3.删除左右子树
从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
4.重复二和三两步,直到集合F中只有一棵二叉树为止。
c++代码实现
#include<iostream>
#include<stdlib.h>
using namespace std;
const int MaxValue =10000;//初始设定的权值最大值
const int MaxBit =4;//初始设定的最大编码位数
const int MaxN=10;//初始设定的最大结点个数
struct HaffNode//哈夫曼树的结点结构
{
int weight;//权值
int flag;//标记
int parent;//双亲结点下标
int leftChild;//左孩子下标
int rightChild;//右孩子下标
};
struct Code//存放哈夫曼编码的数据元素结构
{
int bit[MaxBit];//数组
int start;//编码的起始下标
int weight;//字符的权值
};
//weight[]:由小到大排序
void Haffman(int weight[], int n, HaffNode haffTree[])
//建立叶结点个数为n权值为weight的哈夫曼树haffTree
{
int j,m1,m2,x1,x2;
//哈夫曼树haffTree初始化。n个叶结点的哈夫曼树共有2n-1个结点
for(int i=0;i<2*n-1;i++)
{
if(i<n)
haffTree[i].weight=weight[i];
else
haffTree[i].weight=0;
//注意这里没打else那{},故无论是n个叶子节点还是n-1个非叶子节点都会进行下面4步的初始化
haffTree[i].parent=0;
haffTree[i].flag=0;
haffTree[i].leftChild=-1;
haffTree[i].rightChild=-1;
}
//构造哈夫曼树haffTree的n-1个非叶结点
for(int i=0;i<n-1;i++)
{
m1=m2=MaxValue;//Maxvalue=10000;(就是一个相当大的数)
x1=x2=0;//x1、x2是用来保存最小的两个值在数组对应的下标
for(j=i;j<n+i;j++)//循环找出所有权重中,最小的二个值--morgan
{
if(haffTree[j].weight<m1&&haffTree[j].flag==0)
{
m2=m1;
x2=x1;
m1=haffTree[j].weight;
x1=j;
}
else if(haffTree[j].weight<m2&&haffTree[j].flag==0)
{
m2=haffTree[j].weight;
x2=j;
}
}
cout<<"i="<<i<<" "<<m1<<" "<<m2<<endl;
//将找出的两棵权值最小的子树合并为一棵子树
haffTree[x1].parent=n+i;
haffTree[x2].parent=n+i;
haffTree[x1].flag=1;
haffTree[x2].flag=1;
haffTree[n+i].weight=haffTree[x1].weight+haffTree[x2].weight;
haffTree[n+i].leftChild=x1;
haffTree[n+i].rightChild=x2;
}
}
void HaffmanCode(HaffNode haffTree[],int n,Code haffCode[])
//由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode
{
Code*cd=new Code;
int child, parent;
//求n个叶结点的哈夫曼编码
for(int i=0;i<n;i++)
{
//cd->start=n-1;//不等长编码的最后一位为n-1,
cd->start=0;//,----修改从0开始计数--morgan
cd->weight=haffTree[i].weight;//取得编码对应权值的字符
child=i;
parent=haffTree[child].parent;
//由叶结点向上直到根结点
while(parent!=0)
{
if(haffTree[parent].leftChild==child)
cd->bit[cd->start]=0;//左孩子结点编码0
else
cd->bit[cd->start]=1;//右孩子结点编码1
//cd->start--;
cd->start++;//改成编码自增--morgan
child=parent;
parent=haffTree[child].parent;
}
//保存叶结点的编码和不等长编码的起始位
//for(intj=cd->start+1;j<n;j++)
for(int j=cd->start-1;j>=0;j--)//重新修改编码,从根节点开始计数--morgan
haffCode[i].bit[cd->start-j-1]=cd->bit[j];
haffCode[i].start=cd->start;
haffCode[i].weight=cd->weight;//保存编码对应的权值
}
}
int main()
{
int i, j, n=4,m=0;
int weight[]={2,4,5,7};
//int weight[]={7,5,4,2};
HaffNode*myHaffTree=new HaffNode[2*n-1];
Code*myHaffCode=new Code[n];
if(n>MaxN)
{
cout<<"定义的n越界,修改MaxN!"<<endl;
exit(0);
}
Haffman(weight,n,myHaffTree);
HaffmanCode(myHaffTree,n,myHaffCode);
//输出每个叶结点的哈夫曼编码
for(i=0;i<n;i++)
{
cout<<"Weight="<<myHaffCode[i].weight<<" Code=";
//for(j=myHaffCode[i].start+1;j<n;j++)
for(j=0;j<myHaffCode[i].start;j++)
cout<<myHaffCode[i].bit[j];
m=m+myHaffCode[i].weight*myHaffCode[i].start;
cout<<" 长度:"<<myHaffCode[i].start<<endl;
}
cout<<"huffman'sWPLis:";
cout<<m;
cout<<endl;
return 0;
}
c代码实现:
/*-------------------------------------------------------------------------
* Name: 哈夫曼编码源代码。
* Date: 2011.04.16
* Author: Jeffrey Hill+Jezze(解码部分)
* 在 Win-TC 下测试通过
* 实现过程:着先通过 HuffmanTree() 函数构造哈夫曼树,然后在主函数 main()中
* 自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在
* 父结点左侧,则置码为 0,若在右侧,则置码为 1。最后输出生成的编码。
*------------------------------------------------------------------------*/
#include <stdio.h>
#include<stdlib.h>
#define MAXBIT 100
#define MAXVALUE 10000
#define MAXLEAF 30
#define MAXNODE MAXLEAF*2 -1
typedef struct
{
int bit[MAXBIT];
int start;
} HCodeType; /* 编码结构体 */
typedef struct
{
int weight;
int parent;
int lchild;
int rchild;
int value;
} HNodeType; /* 结点结构体 */
/* 构造一颗哈夫曼树 */
void HuffmanTree (HNodeType HuffNode[MAXNODE], int n)
{
/* i、j: 循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,
x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/
int i, j, m1, m2, x1, x2;
/* 初始化存放哈夫曼树数组 HuffNode[] 中的结点 */
for (i=0; i<2*n-1; i++)
{
HuffNode[i].weight = 0;//权值
HuffNode[i].parent =-1;
HuffNode[i].lchild =-1;
HuffNode[i].rchild =-1;
HuffNode[i].value=i; //实际值,可根据情况替换为字母
} /* end for */
/* 输入 n 个叶子结点的权值 */
for (i=0; i<n; i++)
{
printf ("Please input weight of leaf node %d: \n", i);
scanf ("%d", &HuffNode[i].weight);
} /* end for */
/* 循环构造 Huffman 树 */
for (i=0; i<n-1; i++)
{
m1=m2=MAXVALUE; /* m1、m2中存放两个无父结点且结点权值最小的两个结点 */
x1=x2=0;
/* 找出所有结点中权值最小、无父结点的两个结点,并合并之为一颗二叉树 */
for (j=0; j<n+i; j++)
{
if (HuffNode[j].weight < m1 && HuffNode[j].parent==-1)
{
m2=m1;
x2=x1;
m1=HuffNode[j].weight;
x1=j;
}
else if (HuffNode[j].weight < m2 && HuffNode[j].parent==-1)
{
m2=HuffNode[j].weight;
x2=j;
}
} /* end for */
/* 设置找到的两个子结点 x1、x2 的父结点信息 */
HuffNode[x1].parent = n+i;
HuffNode[x2].parent = n+i;
HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight;
HuffNode[n+i].lchild = x1;
HuffNode[n+i].rchild = x2;
printf ("x1.weight and x2.weight in round %d: %d, %d\n", i+1, HuffNode[x1].weight, HuffNode[x2].weight); /* 用于测试 */
printf ("\n");
} /* end for */
/* for(i=0;i<n+2;i++)
{
printf(" Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d\n",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
}*///测试
} /* end HuffmanTree */
//解码
void decodeing(char string[],HNodeType Buf[],int Num)
{
int i,tmp=0,code[1024];
int m=2*Num-1;
char *nump;
char num[1024];
for(i=0;i<strlen(string);i++)
{
if(string[i]=='0')
num[i]=0;
else
num[i]=1;
}
i=0;
nump=&num[0];
while(nump<(&num[strlen(string)]))
{tmp=m-1;
while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))
{
if(*nump==0)
{
tmp=Buf[tmp].lchild ;
}
else tmp=Buf[tmp].rchild;
nump++;
}
printf("%d",Buf[tmp].value);
}
}
int main(void)
{
HNodeType HuffNode[MAXNODE]; /* 定义一个结点结构体数组 */
HCodeType HuffCode[MAXLEAF], cd; /* 定义一个编码结构体数组, 同时定义一个临时变量来存放求解编码时的信息 */
int i, j, c, p, n;
char pp[100];
printf ("Please input n:\n");
scanf ("%d", &n);
HuffmanTree (HuffNode, n);
for (i=0; i < n; i++)
{
cd.start = n-1;
c = i;
p = HuffNode[c].parent;
while (p != -1) /* 父结点存在 */
{
if (HuffNode[p].lchild == c)
cd.bit[cd.start] = 0;
else
cd.bit[cd.start] = 1;
cd.start--; /* 求编码的低一位 */
c=p;
p=HuffNode[c].parent; /* 设置下一循环条件 */
} /* end while */
/* 保存求出的每个叶结点的哈夫曼编码和编码的起始位 */
for (j=cd.start+1; j<n; j++)
{ HuffCode[i].bit[j] = cd.bit[j];}
HuffCode[i].start = cd.start;
} /* end for */
/* 输出已保存好的所有存在编码的哈夫曼编码 */
for (i=0; i<n; i++)
{
printf ("%d 's Huffman code is: ", i);
for (j=HuffCode[i].start+1; j < n; j++)
{
printf ("%d", HuffCode[i].bit[j]);
}
printf(" start:%d",HuffCode[i].start);
printf ("\n");
}
/* for(i=0;i<n;i++){
for(j=0;j<n;j++)
{
printf ("%d", HuffCode[i].bit[j]);
}
printf("\n");
}*/
printf("Decoding?Please Enter code:\n");
scanf("%s",&pp);
decodeing(pp,HuffNode,n);
getch();
return 0;
}
参考: