哈夫曼树与哈夫曼编码

定义:

给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

构造:

1.构成初始集合
  对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。) 
2.选取左右子树
  在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。 
3.删除左右子树
  从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。 
4.重复二和三两步,直到集合F中只有一棵二叉树为止。

c++代码实现

#include<iostream>
#include<stdlib.h>
using namespace std;
const int MaxValue =10000;//初始设定的权值最大值
const int MaxBit =4;//初始设定的最大编码位数
const int MaxN=10;//初始设定的最大结点个数
struct HaffNode//哈夫曼树的结点结构
{
	int weight;//权值
	int flag;//标记
	int parent;//双亲结点下标
    int leftChild;//左孩子下标
    int rightChild;//右孩子下标
};
struct Code//存放哈夫曼编码的数据元素结构
{
	int bit[MaxBit];//数组
	int start;//编码的起始下标
	int weight;//字符的权值
};
//weight[]:由小到大排序
void Haffman(int weight[], int n, HaffNode haffTree[])
//建立叶结点个数为n权值为weight的哈夫曼树haffTree
{
	int j,m1,m2,x1,x2;
   //哈夫曼树haffTree初始化。n个叶结点的哈夫曼树共有2n-1个结点
	for(int i=0;i<2*n-1;i++)
	{
		if(i<n)
			haffTree[i].weight=weight[i];
		else
			haffTree[i].weight=0;
        //注意这里没打else那{},故无论是n个叶子节点还是n-1个非叶子节点都会进行下面4步的初始化
		haffTree[i].parent=0;
		haffTree[i].flag=0;
		haffTree[i].leftChild=-1;
		haffTree[i].rightChild=-1;
	}
	//构造哈夫曼树haffTree的n-1个非叶结点
	for(int i=0;i<n-1;i++)
	{
		m1=m2=MaxValue;//Maxvalue=10000;(就是一个相当大的数)
		x1=x2=0;//x1、x2是用来保存最小的两个值在数组对应的下标
		for(j=i;j<n+i;j++)//循环找出所有权重中,最小的二个值--morgan
		{
			if(haffTree[j].weight<m1&&haffTree[j].flag==0)
			{
				m2=m1;
				x2=x1;
				m1=haffTree[j].weight;
				x1=j;
			}
			else if(haffTree[j].weight<m2&&haffTree[j].flag==0)
			{
				m2=haffTree[j].weight;
				x2=j;
			}
		}
		cout<<"i="<<i<<" "<<m1<<" "<<m2<<endl;
		//将找出的两棵权值最小的子树合并为一棵子树
		haffTree[x1].parent=n+i;
		haffTree[x2].parent=n+i;
		haffTree[x1].flag=1;
		haffTree[x2].flag=1;
		haffTree[n+i].weight=haffTree[x1].weight+haffTree[x2].weight;
		haffTree[n+i].leftChild=x1;
		haffTree[n+i].rightChild=x2;
	}
}
void HaffmanCode(HaffNode haffTree[],int n,Code haffCode[])
//由n个结点的哈夫曼树haffTree构造哈夫曼编码haffCode
{
	Code*cd=new Code;
	int child, parent;

	//求n个叶结点的哈夫曼编码
	for(int i=0;i<n;i++)
	{
		//cd->start=n-1;//不等长编码的最后一位为n-1,
		cd->start=0;//,----修改从0开始计数--morgan
		cd->weight=haffTree[i].weight;//取得编码对应权值的字符
		child=i;
		parent=haffTree[child].parent;
		//由叶结点向上直到根结点
		while(parent!=0)
		{
			if(haffTree[parent].leftChild==child)
				cd->bit[cd->start]=0;//左孩子结点编码0
			else
				cd->bit[cd->start]=1;//右孩子结点编码1
			//cd->start--;
			cd->start++;//改成编码自增--morgan
			child=parent;
			parent=haffTree[child].parent;
		}
		//保存叶结点的编码和不等长编码的起始位
		//for(intj=cd->start+1;j<n;j++)
		for(int j=cd->start-1;j>=0;j--)//重新修改编码,从根节点开始计数--morgan
			haffCode[i].bit[cd->start-j-1]=cd->bit[j];
		
		haffCode[i].start=cd->start;
		haffCode[i].weight=cd->weight;//保存编码对应的权值
	}
}
int main()
{
	int i, j, n=4,m=0;
    int weight[]={2,4,5,7};
	//int weight[]={7,5,4,2};
    HaffNode*myHaffTree=new HaffNode[2*n-1];
    Code*myHaffCode=new Code[n];
    if(n>MaxN)
	{
		cout<<"定义的n越界,修改MaxN!"<<endl;
		exit(0);
	}
	Haffman(weight,n,myHaffTree);
	HaffmanCode(myHaffTree,n,myHaffCode);
    //输出每个叶结点的哈夫曼编码
	for(i=0;i<n;i++)
	{
		cout<<"Weight="<<myHaffCode[i].weight<<" Code=";
		//for(j=myHaffCode[i].start+1;j<n;j++)
		for(j=0;j<myHaffCode[i].start;j++)
			cout<<myHaffCode[i].bit[j];
		m=m+myHaffCode[i].weight*myHaffCode[i].start;
		cout<<"   长度:"<<myHaffCode[i].start<<endl;
	}
	cout<<"huffman'sWPLis:";
	cout<<m;
	cout<<endl;
	return 0;
}

c代码实现:

/*-------------------------------------------------------------------------
 * Name:   哈夫曼编码源代码。
 * Date:   2011.04.16
 * Author: Jeffrey Hill+Jezze(解码部分)
 * 在 Win-TC 下测试通过
 * 实现过程:着先通过 HuffmanTree() 函数构造哈夫曼树,然后在主函数 main()中
 *           自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在
 *           父结点左侧,则置码为 0,若在右侧,则置码为 1。最后输出生成的编码。
 *------------------------------------------------------------------------*/
#include <stdio.h>
#include<stdlib.h>
 
#define MAXBIT      100
#define MAXVALUE  10000
#define MAXLEAF     30
#define MAXNODE    MAXLEAF*2 -1
 
typedef struct 
{
    int bit[MAXBIT];
    int start;
} HCodeType;        /* 编码结构体 */
typedef struct
{
    int weight;
    int parent;
    int lchild;
    int rchild;
    int value;
} HNodeType;        /* 结点结构体 */
 
/* 构造一颗哈夫曼树 */
void HuffmanTree (HNodeType HuffNode[MAXNODE],  int n)
{ 
    /* i、j: 循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,
        x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/
    int i, j, m1, m2, x1, x2;
    /* 初始化存放哈夫曼树数组 HuffNode[] 中的结点 */
    for (i=0; i<2*n-1; i++)
    {
        HuffNode[i].weight = 0;//权值 
        HuffNode[i].parent =-1;
        HuffNode[i].lchild =-1;
        HuffNode[i].rchild =-1;
        HuffNode[i].value=i; //实际值,可根据情况替换为字母  
    } /* end for */
 
    /* 输入 n 个叶子结点的权值 */
    for (i=0; i<n; i++)
    {
        printf ("Please input weight of leaf node %d: \n", i);
        scanf ("%d", &HuffNode[i].weight);
    } /* end for */
 
    /* 循环构造 Huffman 树 */
    for (i=0; i<n-1; i++)
    {
        m1=m2=MAXVALUE;     /* m1、m2中存放两个无父结点且结点权值最小的两个结点 */
        x1=x2=0;
        /* 找出所有结点中权值最小、无父结点的两个结点,并合并之为一颗二叉树 */
        for (j=0; j<n+i; j++)
        {
            if (HuffNode[j].weight < m1 && HuffNode[j].parent==-1)
            {
                m2=m1; 
                x2=x1; 
                m1=HuffNode[j].weight;
                x1=j;
            }
            else if (HuffNode[j].weight < m2 && HuffNode[j].parent==-1)
            {
                m2=HuffNode[j].weight;
                x2=j;
            }
        } /* end for */
            /* 设置找到的两个子结点 x1、x2 的父结点信息 */
        HuffNode[x1].parent  = n+i;
        HuffNode[x2].parent  = n+i;
        HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight;
        HuffNode[n+i].lchild = x1;
        HuffNode[n+i].rchild = x2;
 
        printf ("x1.weight and x2.weight in round %d: %d, %d\n", i+1, HuffNode[x1].weight, HuffNode[x2].weight);  /* 用于测试 */
        printf ("\n");
    } /* end for */
  /*  for(i=0;i<n+2;i++)
    {
        printf(" Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d\n",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
                  }*///测试 
} /* end HuffmanTree */
 
//解码 
void decodeing(char string[],HNodeType Buf[],int Num)
{
  int i,tmp=0,code[1024];
  int m=2*Num-1;
  char *nump;
  char num[1024];
  for(i=0;i<strlen(string);i++)
  {
   if(string[i]=='0')
  num[i]=0;        
  else
  num[i]=1;                    
  } 
  i=0;
  nump=&num[0];
  
 while(nump<(&num[strlen(string)]))
 {tmp=m-1;
  while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))
  {
  
   if(*nump==0)
   {
     tmp=Buf[tmp].lchild ;          
   } 
   else tmp=Buf[tmp].rchild;
   nump++;
        
  } 
  
  printf("%d",Buf[tmp].value);                                  
 }
 
  
}
 
 
int main(void)
{
    
    HNodeType HuffNode[MAXNODE];            /* 定义一个结点结构体数组 */
    HCodeType HuffCode[MAXLEAF],  cd;       /* 定义一个编码结构体数组, 同时定义一个临时变量来存放求解编码时的信息 */
    int i, j, c, p, n;
    char pp[100];
    printf ("Please input n:\n");
    scanf ("%d", &n);
    HuffmanTree (HuffNode, n);
   
    
    for (i=0; i < n; i++)
    {
        cd.start = n-1;
        c = i;
        p = HuffNode[c].parent;
        while (p != -1)   /* 父结点存在 */
        {
            if (HuffNode[p].lchild == c)
                cd.bit[cd.start] = 0;
            else
                cd.bit[cd.start] = 1;
            cd.start--;        /* 求编码的低一位 */
            c=p;                    
            p=HuffNode[c].parent;    /* 设置下一循环条件 */
        } /* end while */
        
        /* 保存求出的每个叶结点的哈夫曼编码和编码的起始位 */
        for (j=cd.start+1; j<n; j++)
        { HuffCode[i].bit[j] = cd.bit[j];}
        HuffCode[i].start = cd.start;
    } /* end for */
    
    /* 输出已保存好的所有存在编码的哈夫曼编码 */
    for (i=0; i<n; i++)
    {
        printf ("%d 's Huffman code is: ", i);
        for (j=HuffCode[i].start+1; j < n; j++)
        {
            printf ("%d", HuffCode[i].bit[j]);
        }
        printf(" start:%d",HuffCode[i].start);
       
        printf ("\n");
        
    }
/*    for(i=0;i<n;i++){
    for(j=0;j<n;j++)
        {
             printf ("%d", HuffCode[i].bit[j]);           
        }
        printf("\n");
        }*/
    printf("Decoding?Please Enter code:\n");
    scanf("%s",&pp);
decodeing(pp,HuffNode,n);
    getch();
    return 0;
}

参考:




 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值