poj 3225 关于集合运算

1.关于集合运算的推导规约,知道集合是什么东西就一定会推导!   

    U:把区间[l,r]覆盖成1
    I:把[-∞,l)(r,∞]覆盖成0    
    D:把区间[l,r]覆盖成0
    C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
    S:[l,r]区间0/1互换

2.倍化区间处理开闭区间的问题

因为普通的线段树实际处理的并非真正的区间,而是一系列点,相当于处理一个向量这个问题需要处理的是真正的区间,所以应该有一个主导思想就是,把区间点化!不知哪位大牛搞了一个倍增区间出来,实在佩服!对于待处理区间[a,b](暂时不考虑开闭),对其边界均乘2。若区间左开则对左界值+1,若区间右开,则对右界-1!

    如:[2,3]会倍增为[4,6],[2,3)会倍增为[4,5],(2,3]会倍增为[5,6],(2,3)将倍增为[5,5],我们这时可以看到,对于普通线段树无法处理的线段如(x,x+1)将被点化为[2*x+1,2*x+1]!这个问题得到比较完美的解决

最后把查找出来的区间逆向倍增操作一下,就可以得到实际的区间以及起开闭情况!

代码中还将用到延迟更新,向子节点更新操作时,这个具体纠结在互换上面,不过仔细想想还是容易理解的,下面代码会有注解!

区间倍增后,就是处理普通线段树了,这时候一定要思路清晰!

当然普通线段树有两种,1).一种是一开一闭的形式,兄弟节点看上去好像连接起来了(由于开闭是固定的,所以无法直接来处理该题):如对于父节点[a,b),其左孩子为[a,(a+b)/2),右孩子为[(a+b)/2,b)…… 2).另一种是全闭的形式,对于父节点[a,b],其左孩子为[a,(a+b)/2],右孩子为[(a+b)/2+1,b]……这时候一定要看清本质,不要被倍增区间搞混了!

注:题目中还要处理一些无效输入如(4,4)这种没有意义的区间


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值