1.关于集合运算的推导规约,知道集合是什么东西就一定会推导!
U:把区间[l,r]覆盖成1
I:把[-∞,l)(r,∞]覆盖成0
D:把区间[l,r]覆盖成0
C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
S:[l,r]区间0/1互换
2.倍化区间处理开闭区间的问题。
因为普通的线段树实际处理的并非真正的区间,而是一系列点,相当于处理一个向量。这个问题需要处理的是真正的区间,所以应该有一个主导思想就是,把区间点化!不知哪位大牛搞了一个倍增区间出来,实在佩服!对于待处理区间[a,b](暂时不考虑开闭),对其边界均乘2。若区间左开则对左界值+1,若区间右开,则对右界-1!
如:[2,3]会倍增为[4,6],[2,3)会倍增为[4,5],(2,3]会倍增为[5,6],(2,3)将倍增为[5,5],我们这时可以看到,对于普通线段树无法处理的线段如(x,x+1)将被点化为[2*x+1,2*x+1]!这个问题得到比较完美的解决
最后把查找出来的区间逆向倍增操作一下,就可以得到实际的区间以及起开闭情况!
代码中还将用到延迟更新,向子节点更新操作时,这个具体纠结在互换上面,不过仔细想想还是容易理解的,下面代码会有注解!
区间倍增后,就是处理普通线段树了,这时候一定要思路清晰!
当然普通线段树有两种,1).一种是一开一闭的形式,兄弟节点看上去好像连接起来了(由于开闭是固定的,所以无法直接来处理该题):如对于父节点[a,b),其左孩子为[a,(a+b)/2),右孩子为[(a+b)/2,b)…… 2).另一种是全闭的形式,对于父节点[a,b],其左孩子为[a,(a+b)/2],右孩子为[(a+b)/2+1,b]……这时候一定要看清本质,不要被倍增区间搞混了!
注:题目中还要处理一些无效输入如(4,4)这种没有意义的区间