- 博客(299)
- 资源 (12)
- 收藏
- 关注
原创 【深度学习02】YOLO模型的数据集、训练、验证、预测、导出
本文详细介绍了基于YOLO模型的烟火检测全流程,包括数据集构建、模型训练、验证、预测和导出等关键环节。主要内容包括: 数据集准备:详细说明了YOLOv5和YOLOv8两种数据目录结构,并解析了标签文件格式要求。 模型训练:涵盖了单GPU/多GPU训练、参数设置、训练恢复等场景,并以烟火检测为例展示了完整训练流程和结果分析。 模型验证:介绍了验证指标解读方法,包括混淆矩阵、PR曲线等可视化工具的使用。 预测部署:讲解了预测参数配置、结果解析方法,并提供了烟火检测的预测示例。 模型导出:详细说明了ONNX等格式
2026-01-09 17:21:36
575
原创 【目标检测软件 03】基于yolo的室内烟火识别系统(含Python源码、UI界面、数据集、训练模型与代码-毕设推荐项目)
本文介绍了一款基于YOLO算法的家庭烟火识别系统,该系统采用PyQt5开发可视化界面,支持多种输入源(摄像头/图片/视频/网络流)的实时检测。系统包含2847张标注图像的数据集,支持模型训练、验证和导出ONNX格式,并提供参数调整、结果保存等功能。部署要求包括Python环境和可选GPU加速,通过模块化设计实现火灾早期预警,适用于智能家居等场景。
2026-01-09 17:18:57
794
原创 【数据集 01】家庭室内烟火数据集(按比例划分训练、验证、测试)包含训练好的yolo11/yolov8模型
本文介绍了一个专门针对家庭室内火灾场景构建的图像数据集及其应用效果。该数据集包含2847张标注图像,分为火(2234个标注框)和烟(2285个标注框)两类,按照85:10:5的比例划分为训练集、验证集和测试集。数据集经过标准化、增强等预处理,采用YOLO11模型训练后取得良好效果:训练损失稳定下降,验证集查准率81.8%,查全率67.8%,mAP@0.5达到74.4%,显示模型对家庭烟火检测具有较好的识别能力。
2026-01-09 16:11:09
679
原创 【目标检测软件 02】AirsPy 目标检测系统操作指南
AirsPy是一款基于Python与PyQt5开发的YOLO目标检测系统,支持图像、视频、摄像头及网络流媒体的实时检测。主要功能包括:多源输入支持(本地文件/摄像头/RTSP/HTTP流)、可视化检测结果展示、参数动态调节(IoU/置信度阈值)、检测结果管理(自动保存图像/视频/Excel表格)。软件采用模块化设计,提供模型转换工具,支持.pt和ONNX格式模型,并配备友好的图形界面。系统要求Python3.11环境,推荐16GB内存,支持CPU/GPU加速。适用于工业质检、安防监控等场景,用户无需编程即可
2025-12-21 19:47:52
768
1
原创 【目标检测软件 01】YOLO识别软件功能与操作指南
摘要:本文介绍了一款基于YOLO模型的智能目标检测软件,具有直观的图形界面和多功能支持。软件支持本地文件(图片/视频)、摄像头、RTSP/HTTP流等多种媒体源输入,可实时显示检测结果并支持参数调整。主界面分为媒体资源列表、视频显示区和检测结果表格三部分,提供播放控制、模型选择、置信度调节等功能。支持检测结果保存为图像或文本文件,并可自定义软件名称和Logo。软件采用无边框设计,提供窗口控制按钮。使用前需加载有效YOLO模型(支持训练模型),支持主流YOLO版本。
2025-12-13 22:49:20
702
原创 【PyQt5 14】使用Inno Setup 打包PyQt5应用软件成安装程序
本文介绍了使用InnoSetup打包PyQt5应用程序的完整流程。首先需安装InnoSetup和PyInstaller,然后用PyInstaller将PyQt5程序打包成exe文件(支持单文件和多文件模式)。接着通过InnoSetup向导设置应用程序信息、安装路径、文件依赖、快捷方式等配置项,最后编译生成安装程序。文中详细说明了PyInstaller的各项打包参数和InnoSetup的每个配置步骤,帮助开发者将Python应用打包成专业的Windows安装包。
2025-08-14 08:42:54
935
原创 【标注工具 02】YOLO、COCO、VOC格式规则
本文介绍了目标检测、语义分割和姿态估计任务中三种主流数据标注格式(YOLO、COCO、VOC)的具体规则。在目标检测部分,分别说明了YOLO的txt格式、COCO的json格式和VOC的xml格式的标注规范;在语义分割部分,详细描述了多边形标注点的存储方式;在姿态估计部分,重点解释了关键点坐标及其可见性的标注方法。每种格式都通过具体示例展示了数据组织结构,包括类别信息、边界框坐标、分割点坐标和关键点坐标等核心元素。这些格式规范为计算机视觉任务的数据标注工作提供了标准化参考。
2025-08-13 08:37:17
857
原创 【标注工具 01】labelfast标注工具使用指南(支持YOLO\COCO\VOC格式)
摘要: 本文介绍了自主研发的图像标注工具Labelfast,解决了主流标注工具(如LabelImg)频繁崩溃、外网访问受限、上传下载效率低及格式支持不足等痛点。Labelfast支持YOLO、COCO、VOC三种格式,提供矩形、多边形、关键点标注功能,具备自动/手动保存、撤销操作、画布缩放等特性。工具无需安装,支持Windows系统,通过分类文件(class.txt)管理类别,标注结果实时保存至labels文件夹。详细操作包括文件加载、标注绘制、格式切换及画布控制,显著提升了标注效率和本地化使用体验。
2025-08-13 08:35:18
1646
Gstreamer讲解文件和示例代码
2025-03-28
yolov5+deepsort+bytertrack+iou 人车流统计
2024-06-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅