线段树扫描线的应用,每一个矩形将其抽象为上下两条边,上下边区分为f=-1,f=1,离散化横坐标,按横坐标建立线段树,然后将每条边按纵坐标高度排序。
接下来的操作可以想象为一条线由下往上扫描,每次扫过两纵坐标之间的区域。用cover[rt]记录出现下边比上边多的次数,当cover[rt]不为0时表示此段纵坐标区间内rt表示横坐标之间的区域矩形面积可以计算。
每次pushup,sum表示当前区间可计算的区间长度。因每次区间可计算值将更新,所以每次操作后累加当前区域面积值。最后输出累加值即可。
注意节点并不表示端点,表示当前端点到下一段点间的区间。注意r+1,r-1的问题。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 220
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
double sum[N<<2];
int cover[N<<2];
double X[N];
struct BIAN
{
double l;
double r;
double y;
int f;
}s[N];
bool cmp(BIAN a,BIAN b)
{
return a.y<b.y;
}
void pushup(int l,int r,int rt)
{
if(cover[rt])sum[rt]=X[r+1]-X[l];
else if(l==r)sum[rt]=0;
else sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void update(int L,int R,int c,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
cover[rt]+=c;
pushup(l,r,rt);
return ;
}
int m=(l+r)>>1;
if(L<=m)update(L,R,c,lson);
if(R>m)update(L,R,c,rson);
pushup(l,r,rt);
}
int main()
{
int n,i,cas=1;
while(scanf("%d",&n),n)
{
i=0;
double a,b,c,d;
while(n--)
{
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
X[i]=a;
s[i].y=b;s[i].l=a;s[i].r=c;s[i].f=1;
i++;
X[i]=c;
s[i].y=d;s[i].l=a;s[i].r=c;s[i].f=-1;
i++;
}
int m=i;
sort(X,X+i);
sort(s,s+i,cmp);
int lx=unique(X,X+i)-X;;
memset(sum,0,sizeof(sum));
memset(cover,0,sizeof(cover));
double ret=0;
for(i=0;i<=m-1;i++)
{
int l=lower_bound(X,X+lx,s[i].l)-X;
int r=lower_bound(X,X+lx,s[i].r)-X-1;
update(l,r,s[i].f,0,lx-1,1);
ret+=sum[1]*(s[i+1].y-s[i].y);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n",cas++,ret);
}
return 0;
}