背包问题(Knapsack Problem)
假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号、单价与重量如下所示:0 李子 4KG NT$4500
1 苹果 5KG NT$5700
2 橘子 2KG NT$2250
3 草莓 1KG NT$1100
4 甜瓜 6KG NT$6700
解法
背包问题是关于最佳化的问题,要解最佳化问题可以使用「动态规划」(Dynamic programming),从空集合开始,每增加一个元素就先求出该阶段的最佳解,直到所有的元素加入至集合中,最后得到的就是最佳解。
以背包问题为例,我们使用两个阵列value与item,value表示目前的最佳解所得之总价,item表示最后一个放至背包的水果,假设有负重量 1~8的背包8个,并对每个背包求其最佳解。
逐步将水果放入背包中,并求该阶段的最佳解:
放入李子
背包负重 1 2 3 4 5 6 7 8
value 0 0 0 4500 4500 4500 4500 9000
item - - - 0 0 0 0 0
放入苹果
背包负重 1 2 3 4 5 6 7 8
value 0 0 0 4500 5700 5700 5700 9000
item - - - 0 1 1 1 0
放入橘子
背包负重 1 2 3 4 5 6 7 8
value 0 2250 2250 4500 5700 6750 7950 9000
item - 2 2 0 1 2 2 0
放入草莓
背包负重 1 2 3 4 5 6 7 8
value 1100 2250 3350 4500 5700 6800 7950 9050
item 3 2 3 0 1 3 2 3
放入甜瓜
背包负重 1 2 3 4 5 6 7 8
value 1100 2250 3350 4500 5700 6800 7950 9050
item 3 2 3 0 1 3 2 3
由最后一个表格,可以得知在背包负重8公斤时,最多可以装入9050元的水果,而最后一个装入的 水果是3号,也就是草莓,装入了草莓,背包只能再放入7公斤(8-1)的水果,所以必须看背包负重7公斤时的最佳解,最后一个放入的是2号,也就 是橘子,现在背包剩下负重量5公斤(7-2),所以看负重5公斤的最佳解,最后放入的是1号,也就是苹果,此时背包负重量剩下0公斤(5-5),无法 再放入水果,所以求出最佳解为放入草莓、橘子与苹果,而总价为9050元。
代码及注释
#define LIMIT 8 // 重量限制
#define N 5 // 物品种类
#define MIN 1 // 最小重量
struct body {
char name[20];
int size;
int price;
};
typedef struct body object;
//主程序
int item[LIMIT+1] = {0};
int value[LIMIT+1] = {0};
int newvalue, i, s, p;
object a[] = {{"李子", 4, 4500},
{"苹果", 5, 5700},
{"橘子", 2, 2250},
{"草莓", 1, 1100},
{"甜瓜", 6, 6700}};
for(i = 0; i < N; i++) {//每种水果都试一遍
for(s = a[i].size; s <= LIMIT; s++) {//从该水果的千克数开始算起
p = s - a[i].size;//获取前千克数的指针
newvalue = value[p] + a[i].price;//获取购买该水果后的newvalue值
if(newvalue > value[s]) {// 找到阶段最佳解,看看是不是比以前的多
value[s] = newvalue;//保存这个较大的结果
item[s] = i;//记录这次买了什么水果
}
}
}
printf("物品\t价格\n");
for(i = LIMIT; i >= MIN; i = i - a[item[i]].size) {
printf("%s\t%d\n",
a[item[i]].name, a[item[i]].price);
}
printf("合计\t%d\n", value[LIMIT]);